Extensions 1→N→G→Q→1 with N=C2×C32 and Q=C2

Direct product G=N×Q with N=C2×C32 and Q=C2
dρLabelID
C22×C32128C2^2xC32128,988

Semidirect products G=N:Q with N=C2×C32 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C32)⋊1C2 = C22⋊C32φ: C2/C1C2 ⊆ Aut C2×C3264(C2xC32):1C2128,131
(C2×C32)⋊2C2 = D4.C16φ: C2/C1C2 ⊆ Aut C2×C32642(C2xC32):2C2128,133
(C2×C32)⋊3C2 = D162C4φ: C2/C1C2 ⊆ Aut C2×C3264(C2xC32):3C2128,147
(C2×C32)⋊4C2 = D16.C4φ: C2/C1C2 ⊆ Aut C2×C32642(C2xC32):4C2128,149
(C2×C32)⋊5C2 = C2×D32φ: C2/C1C2 ⊆ Aut C2×C3264(C2xC32):5C2128,991
(C2×C32)⋊6C2 = C4○D32φ: C2/C1C2 ⊆ Aut C2×C32642(C2xC32):6C2128,994
(C2×C32)⋊7C2 = C2×SD64φ: C2/C1C2 ⊆ Aut C2×C3264(C2xC32):7C2128,992
(C2×C32)⋊8C2 = C2×M6(2)φ: C2/C1C2 ⊆ Aut C2×C3264(C2xC32):8C2128,989
(C2×C32)⋊9C2 = D4○C32φ: C2/C1C2 ⊆ Aut C2×C32642(C2xC32):9C2128,990

Non-split extensions G=N.Q with N=C2×C32 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C32).1C2 = Q322C4φ: C2/C1C2 ⊆ Aut C2×C32128(C2xC32).1C2128,148
(C2×C32).2C2 = C4⋊C32φ: C2/C1C2 ⊆ Aut C2×C32128(C2xC32).2C2128,153
(C2×C32).3C2 = C323C4φ: C2/C1C2 ⊆ Aut C2×C32128(C2xC32).3C2128,155
(C2×C32).4C2 = C2×Q64φ: C2/C1C2 ⊆ Aut C2×C32128(C2xC32).4C2128,993
(C2×C32).5C2 = C32.C4φ: C2/C1C2 ⊆ Aut C2×C32642(C2xC32).5C2128,157
(C2×C32).6C2 = C324C4φ: C2/C1C2 ⊆ Aut C2×C32128(C2xC32).6C2128,156
(C2×C32).7C2 = C325C4φ: C2/C1C2 ⊆ Aut C2×C32128(C2xC32).7C2128,129
(C2×C32).8C2 = M7(2)φ: C2/C1C2 ⊆ Aut C2×C32642(C2xC32).8C2128,160

׿
×
𝔽