Extensions 1→N→G→Q→1 with N=C16 and Q=D4

Direct product G=N×Q with N=C16 and Q=D4
dρLabelID
D4×C1664D4xC16128,899

Semidirect products G=N:Q with N=C16 and Q=D4
extensionφ:Q→Aut NdρLabelID
C161D4 = C16⋊D4φ: D4/C2C22 ⊆ Aut C1664C16:1D4128,950
C162D4 = C162D4φ: D4/C2C22 ⊆ Aut C1664C16:2D4128,952
C163D4 = C163D4φ: D4/C2C22 ⊆ Aut C1664C16:3D4128,982
C164D4 = C4⋊D16φ: D4/C4C2 ⊆ Aut C1664C16:4D4128,978
C165D4 = C165D4φ: D4/C4C2 ⊆ Aut C1664C16:5D4128,980
C166D4 = C166D4φ: D4/C4C2 ⊆ Aut C1664C16:6D4128,901
C167D4 = C167D4φ: D4/C22C2 ⊆ Aut C1664C16:7D4128,947
C168D4 = C168D4φ: D4/C22C2 ⊆ Aut C1664C16:8D4128,949
C169D4 = C169D4φ: D4/C22C2 ⊆ Aut C1664C16:9D4128,900

Non-split extensions G=N.Q with N=C16 and Q=D4
extensionφ:Q→Aut NdρLabelID
C16.1D4 = C16.D4φ: D4/C2C22 ⊆ Aut C1664C16.1D4128,951
C16.2D4 = C8.7D8φ: D4/C2C22 ⊆ Aut C1664C16.2D4128,983
C16.3D4 = C32⋊C22φ: D4/C2C22 ⊆ Aut C16324+C16.3D4128,995
C16.4D4 = Q64⋊C2φ: D4/C2C22 ⊆ Aut C16644-C16.4D4128,996
C16.5D4 = D64φ: D4/C4C2 ⊆ Aut C16642+C16.5D4128,161
C16.6D4 = SD128φ: D4/C4C2 ⊆ Aut C16642C16.6D4128,162
C16.7D4 = Q128φ: D4/C4C2 ⊆ Aut C161282-C16.7D4128,163
C16.8D4 = C4⋊Q32φ: D4/C4C2 ⊆ Aut C16128C16.8D4128,979
C16.9D4 = C2×D32φ: D4/C4C2 ⊆ Aut C1664C16.9D4128,991
C16.10D4 = C2×SD64φ: D4/C4C2 ⊆ Aut C1664C16.10D4128,992
C16.11D4 = C2×Q64φ: D4/C4C2 ⊆ Aut C16128C16.11D4128,993
C16.12D4 = C8.21D8φ: D4/C4C2 ⊆ Aut C1664C16.12D4128,981
C16.13D4 = C4○D32φ: D4/C4C2 ⊆ Aut C16642C16.13D4128,994
C16.14D4 = C16○D8φ: D4/C4C2 ⊆ Aut C16322C16.14D4128,902
C16.15D4 = D162C4φ: D4/C22C2 ⊆ Aut C1664C16.15D4128,147
C16.16D4 = Q322C4φ: D4/C22C2 ⊆ Aut C16128C16.16D4128,148
C16.17D4 = M6(2)⋊C2φ: D4/C22C2 ⊆ Aut C16324+C16.17D4128,151
C16.18D4 = C16.18D4φ: D4/C22C2 ⊆ Aut C16644-C16.18D4128,152
C16.19D4 = C16.19D4φ: D4/C22C2 ⊆ Aut C1664C16.19D4128,948
C16.20D4 = D4.3D8φ: D4/C22C2 ⊆ Aut C16324+C16.20D4128,953
C16.21D4 = D4.4D8φ: D4/C22C2 ⊆ Aut C16644-C16.21D4128,954
C16.22D4 = D16.C4φ: D4/C22C2 ⊆ Aut C16642C16.22D4128,149
C16.23D4 = D163C4φ: D4/C22C2 ⊆ Aut C16324C16.23D4128,150
C16.24D4 = D4.5D8φ: D4/C22C2 ⊆ Aut C16324C16.24D4128,955
C16.25D4 = C23.C16φ: D4/C22C2 ⊆ Aut C16324C16.25D4128,132
C16.26D4 = D8.C8φ: D4/C22C2 ⊆ Aut C16324C16.26D4128,903
C16.27D4 = C22⋊C32central extension (φ=1)64C16.27D4128,131
C16.28D4 = D4.C16central extension (φ=1)642C16.28D4128,133
C16.29D4 = C4⋊C32central extension (φ=1)128C16.29D4128,153
C16.30D4 = C8.C16central extension (φ=1)322C16.30D4128,154

׿
×
𝔽