Extensions 1→N→G→Q→1 with N=C4○D4 and Q=C2×C4

Direct product G=N×Q with N=C4○D4 and Q=C2×C4
dρLabelID
C2×C4×C4○D464C2xC4xC4oD4128,2156

Semidirect products G=N:Q with N=C4○D4 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
C4○D41(C2×C4) = 2+ 1+45C4φ: C2×C4/C2C22 ⊆ Out C4○D432C4oD4:1(C2xC4)128,1629
C4○D42(C2×C4) = 2- 1+44C4φ: C2×C4/C2C22 ⊆ Out C4○D464C4oD4:2(C2xC4)128,1630
C4○D43(C2×C4) = 2- 1+45C4φ: C2×C4/C2C22 ⊆ Out C4○D4164C4oD4:3(C2xC4)128,1633
C4○D44(C2×C4) = C42.275C23φ: C2×C4/C2C22 ⊆ Out C4○D432C4oD4:4(C2xC4)128,1678
C4○D45(C2×C4) = C42.280C23φ: C2×C4/C2C22 ⊆ Out C4○D464C4oD4:5(C2xC4)128,1683
C4○D46(C2×C4) = C42.281C23φ: C2×C4/C2C22 ⊆ Out C4○D464C4oD4:6(C2xC4)128,1684
C4○D47(C2×C4) = C4×C4○D8φ: C2×C4/C4C2 ⊆ Out C4○D464C4oD4:7(C2xC4)128,1671
C4○D48(C2×C4) = C42.383D4φ: C2×C4/C4C2 ⊆ Out C4○D464C4oD4:8(C2xC4)128,1675
C4○D49(C2×C4) = C4×C8⋊C22φ: C2×C4/C4C2 ⊆ Out C4○D432C4oD4:9(C2xC4)128,1676
C4○D410(C2×C4) = C4×2+ 1+4φ: C2×C4/C4C2 ⊆ Out C4○D432C4oD4:10(C2xC4)128,2161
C4○D411(C2×C4) = C4×2- 1+4φ: C2×C4/C4C2 ⊆ Out C4○D464C4oD4:11(C2xC4)128,2162
C4○D412(C2×C4) = C2×C23.24D4φ: C2×C4/C22C2 ⊆ Out C4○D464C4oD4:12(C2xC4)128,1624
C4○D413(C2×C4) = C2×C23.36D4φ: C2×C4/C22C2 ⊆ Out C4○D464C4oD4:13(C2xC4)128,1627
C4○D414(C2×C4) = C24.98D4φ: C2×C4/C22C2 ⊆ Out C4○D432C4oD4:14(C2xC4)128,1628
C4○D415(C2×C4) = C22×C4≀C2φ: C2×C4/C22C2 ⊆ Out C4○D432C4oD4:15(C2xC4)128,1631
C4○D416(C2×C4) = C2×C42⋊C22φ: C2×C4/C22C2 ⊆ Out C4○D432C4oD4:16(C2xC4)128,1632
C4○D417(C2×C4) = C2×C23.33C23φ: C2×C4/C22C2 ⊆ Out C4○D464C4oD4:17(C2xC4)128,2159
C4○D418(C2×C4) = C22.14C25φ: C2×C4/C22C2 ⊆ Out C4○D432C4oD4:18(C2xC4)128,2160

Non-split extensions G=N.Q with N=C4○D4 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
C4○D4.1(C2×C4) = 2+ 1+43C4φ: C2×C4/C2C22 ⊆ Out C4○D432C4oD4.1(C2xC4)128,524
C4○D4.2(C2×C4) = 2- 1+42C4φ: C2×C4/C2C22 ⊆ Out C4○D432C4oD4.2(C2xC4)128,525
C4○D4.3(C2×C4) = 2+ 1+44C4φ: C2×C4/C2C22 ⊆ Out C4○D4324C4oD4.3(C2xC4)128,526
C4○D4.4(C2×C4) = C4≀C2⋊C4φ: C2×C4/C2C22 ⊆ Out C4○D432C4oD4.4(C2xC4)128,591
C4○D4.5(C2×C4) = C429(C2×C4)φ: C2×C4/C2C22 ⊆ Out C4○D432C4oD4.5(C2xC4)128,592
C4○D4.6(C2×C4) = M4(2).41D4φ: C2×C4/C2C22 ⊆ Out C4○D4164C4oD4.6(C2xC4)128,593
C4○D4.7(C2×C4) = M4(2).44D4φ: C2×C4/C2C22 ⊆ Out C4○D4324C4oD4.7(C2xC4)128,613
C4○D4.8(C2×C4) = C8.C22⋊C4φ: C2×C4/C2C22 ⊆ Out C4○D432C4oD4.8(C2xC4)128,614
C4○D4.9(C2×C4) = C8⋊C22⋊C4φ: C2×C4/C2C22 ⊆ Out C4○D432C4oD4.9(C2xC4)128,615
C4○D4.10(C2×C4) = C42.276C23φ: C2×C4/C2C22 ⊆ Out C4○D464C4oD4.10(C2xC4)128,1679
C4○D4.11(C2×C4) = M4(2).51D4φ: C2×C4/C2C22 ⊆ Out C4○D4164C4oD4.11(C2xC4)128,1688
C4○D4.12(C2×C4) = M4(2)○D8φ: C2×C4/C2C22 ⊆ Out C4○D4324C4oD4.12(C2xC4)128,1689
C4○D4.13(C2×C4) = C4×C4≀C2φ: C2×C4/C4C2 ⊆ Out C4○D432C4oD4.13(C2xC4)128,490
C4○D4.14(C2×C4) = D4.C42φ: C2×C4/C4C2 ⊆ Out C4○D432C4oD4.14(C2xC4)128,491
C4○D4.15(C2×C4) = C42.426D4φ: C2×C4/C4C2 ⊆ Out C4○D4164C4oD4.15(C2xC4)128,638
C4○D4.16(C2×C4) = M4(2).48D4φ: C2×C4/C4C2 ⊆ Out C4○D432C4oD4.16(C2xC4)128,639
C4○D4.17(C2×C4) = M4(2).49D4φ: C2×C4/C4C2 ⊆ Out C4○D464C4oD4.17(C2xC4)128,640
C4○D4.18(C2×C4) = C16○D8φ: C2×C4/C4C2 ⊆ Out C4○D4322C4oD4.18(C2xC4)128,902
C4○D4.19(C2×C4) = D8.C8φ: C2×C4/C4C2 ⊆ Out C4○D4324C4oD4.19(C2xC4)128,903
C4○D4.20(C2×C4) = C4×C8.C22φ: C2×C4/C4C2 ⊆ Out C4○D464C4oD4.20(C2xC4)128,1677
C4○D4.21(C2×C4) = C2×C8○D8φ: C2×C4/C4C2 ⊆ Out C4○D432C4oD4.21(C2xC4)128,1685
C4○D4.22(C2×C4) = C2×C8.26D4φ: C2×C4/C4C2 ⊆ Out C4○D432C4oD4.22(C2xC4)128,1686
C4○D4.23(C2×C4) = C42.283C23φ: C2×C4/C4C2 ⊆ Out C4○D4324C4oD4.23(C2xC4)128,1687
C4○D4.24(C2×C4) = C4.22C25φ: C2×C4/C4C2 ⊆ Out C4○D4324C4oD4.24(C2xC4)128,2305
C4○D4.25(C2×C4) = Q8.C42φ: C2×C4/C22C2 ⊆ Out C4○D432C4oD4.25(C2xC4)128,496
C4○D4.26(C2×C4) = D4.3C42φ: C2×C4/C22C2 ⊆ Out C4○D432C4oD4.26(C2xC4)128,497
C4○D4.27(C2×C4) = C8○D4⋊C4φ: C2×C4/C22C2 ⊆ Out C4○D4324C4oD4.27(C2xC4)128,546
C4○D4.28(C2×C4) = C4○D4.4Q8φ: C2×C4/C22C2 ⊆ Out C4○D464C4oD4.28(C2xC4)128,547
C4○D4.29(C2×C4) = C4○D4.5Q8φ: C2×C4/C22C2 ⊆ Out C4○D464C4oD4.29(C2xC4)128,548
C4○D4.30(C2×C4) = C2×D4.C8φ: C2×C4/C22C2 ⊆ Out C4○D464C4oD4.30(C2xC4)128,848
C4○D4.31(C2×C4) = M5(2)⋊12C22φ: C2×C4/C22C2 ⊆ Out C4○D4324C4oD4.31(C2xC4)128,849
C4○D4.32(C2×C4) = C4○D4.7Q8φ: C2×C4/C22C2 ⊆ Out C4○D464C4oD4.32(C2xC4)128,1644
C4○D4.33(C2×C4) = C4○D4.8Q8φ: C2×C4/C22C2 ⊆ Out C4○D464C4oD4.33(C2xC4)128,1645
C4○D4.34(C2×C4) = M4(2).29C23φ: C2×C4/C22C2 ⊆ Out C4○D4324C4oD4.34(C2xC4)128,1648
C4○D4.35(C2×C4) = C2×Q8○M4(2)φ: C2×C4/C22C2 ⊆ Out C4○D432C4oD4.35(C2xC4)128,2304
C4○D4.36(C2×C4) = C4×C8○D4φ: trivial image64C4oD4.36(C2xC4)128,1606
C4○D4.37(C2×C4) = D4.5C42φ: trivial image64C4oD4.37(C2xC4)128,1607
C4○D4.38(C2×C4) = C2×D4○C16φ: trivial image64C4oD4.38(C2xC4)128,2138
C4○D4.39(C2×C4) = Q8○M5(2)φ: trivial image324C4oD4.39(C2xC4)128,2139
C4○D4.40(C2×C4) = C22×C8○D4φ: trivial image64C4oD4.40(C2xC4)128,2303

׿
×
𝔽