Copied to
clipboard

G = C324C4order 128 = 27

2nd semidirect product of C32 and C4 acting via C4/C2=C2

p-group, metacyclic, nilpotent (class 5), monomial

Aliases: C324C4, C8.6Q16, C4.2Q32, C16.3Q8, C2.3SD64, C22.11D16, (C2×C32).6C2, (C2×C4).69D8, C8.16(C4⋊C4), C16.17(C2×C4), (C2×C8).240D4, C163C4.3C2, C2.4(C163C4), C4.11(C2.D8), (C2×C16).78C22, SmallGroup(128,156)

Series: Derived Chief Lower central Upper central Jennings

C1C16 — C324C4
C1C2C4C8C2×C8C2×C16C2×C32 — C324C4
C1C2C4C8C16 — C324C4
C1C22C2×C4C2×C8C2×C16 — C324C4
C1C2C2C2C2C2C2C2C2C4C4C4C4C8C8C2×C16 — C324C4

Generators and relations for C324C4
 G = < a,b | a32=b4=1, bab-1=a15 >

16C4
16C4
8C2×C4
8C2×C4
4C4⋊C4
4C4⋊C4
2C2.D8
2C2.D8

Smallest permutation representation of C324C4
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 61 82 115)(2 44 83 98)(3 59 84 113)(4 42 85 128)(5 57 86 111)(6 40 87 126)(7 55 88 109)(8 38 89 124)(9 53 90 107)(10 36 91 122)(11 51 92 105)(12 34 93 120)(13 49 94 103)(14 64 95 118)(15 47 96 101)(16 62 65 116)(17 45 66 99)(18 60 67 114)(19 43 68 97)(20 58 69 112)(21 41 70 127)(22 56 71 110)(23 39 72 125)(24 54 73 108)(25 37 74 123)(26 52 75 106)(27 35 76 121)(28 50 77 104)(29 33 78 119)(30 48 79 102)(31 63 80 117)(32 46 81 100)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,61,82,115)(2,44,83,98)(3,59,84,113)(4,42,85,128)(5,57,86,111)(6,40,87,126)(7,55,88,109)(8,38,89,124)(9,53,90,107)(10,36,91,122)(11,51,92,105)(12,34,93,120)(13,49,94,103)(14,64,95,118)(15,47,96,101)(16,62,65,116)(17,45,66,99)(18,60,67,114)(19,43,68,97)(20,58,69,112)(21,41,70,127)(22,56,71,110)(23,39,72,125)(24,54,73,108)(25,37,74,123)(26,52,75,106)(27,35,76,121)(28,50,77,104)(29,33,78,119)(30,48,79,102)(31,63,80,117)(32,46,81,100)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,61,82,115)(2,44,83,98)(3,59,84,113)(4,42,85,128)(5,57,86,111)(6,40,87,126)(7,55,88,109)(8,38,89,124)(9,53,90,107)(10,36,91,122)(11,51,92,105)(12,34,93,120)(13,49,94,103)(14,64,95,118)(15,47,96,101)(16,62,65,116)(17,45,66,99)(18,60,67,114)(19,43,68,97)(20,58,69,112)(21,41,70,127)(22,56,71,110)(23,39,72,125)(24,54,73,108)(25,37,74,123)(26,52,75,106)(27,35,76,121)(28,50,77,104)(29,33,78,119)(30,48,79,102)(31,63,80,117)(32,46,81,100) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,61,82,115),(2,44,83,98),(3,59,84,113),(4,42,85,128),(5,57,86,111),(6,40,87,126),(7,55,88,109),(8,38,89,124),(9,53,90,107),(10,36,91,122),(11,51,92,105),(12,34,93,120),(13,49,94,103),(14,64,95,118),(15,47,96,101),(16,62,65,116),(17,45,66,99),(18,60,67,114),(19,43,68,97),(20,58,69,112),(21,41,70,127),(22,56,71,110),(23,39,72,125),(24,54,73,108),(25,37,74,123),(26,52,75,106),(27,35,76,121),(28,50,77,104),(29,33,78,119),(30,48,79,102),(31,63,80,117),(32,46,81,100)]])

38 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F8A8B8C8D16A···16H32A···32P
order1222444444888816···1632···32
size1111221616161622222···22···2

38 irreducible representations

dim11112222222
type+++-+-+-+
imageC1C2C2C4Q8D4Q16D8Q32D16SD64
kernelC324C4C163C4C2×C32C32C16C2×C8C8C2×C4C4C22C2
# reps121411224416

Matrix representation of C324C4 in GL4(𝔽97) generated by

269500
22600
009273
001219
,
875300
531000
001269
007185
G:=sub<GL(4,GF(97))| [26,2,0,0,95,26,0,0,0,0,92,12,0,0,73,19],[87,53,0,0,53,10,0,0,0,0,12,71,0,0,69,85] >;

C324C4 in GAP, Magma, Sage, TeX

C_{32}\rtimes_4C_4
% in TeX

G:=Group("C32:4C4");
// GroupNames label

G:=SmallGroup(128,156);
// by ID

G=gap.SmallGroup(128,156);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,596,422,268,1684,242,4037,124]);
// Polycyclic

G:=Group<a,b|a^32=b^4=1,b*a*b^-1=a^15>;
// generators/relations

Export

Subgroup lattice of C324C4 in TeX

׿
×
𝔽