Copied to
clipboard

G = C323C4order 128 = 27

1st semidirect product of C32 and C4 acting via C4/C2=C2

p-group, metacyclic, nilpotent (class 5), monomial

Aliases: C323C4, C2.2D32, C8.5Q16, C4.1Q32, C16.2Q8, C2.2Q64, C22.10D16, (C2×C32).3C2, (C2×C4).68D8, C8.15(C4⋊C4), C16.16(C2×C4), (C2×C8).239D4, C163C4.2C2, C2.3(C163C4), C4.10(C2.D8), (C2×C16).77C22, SmallGroup(128,155)

Series: Derived Chief Lower central Upper central Jennings

C1C16 — C323C4
C1C2C4C8C2×C8C2×C16C2×C32 — C323C4
C1C2C4C8C16 — C323C4
C1C22C2×C4C2×C8C2×C16 — C323C4
C1C2C2C2C2C2C2C2C2C4C4C4C4C8C8C2×C16 — C323C4

Generators and relations for C323C4
 G = < a,b | a32=b4=1, bab-1=a-1 >

16C4
16C4
8C2×C4
8C2×C4
4C4⋊C4
4C4⋊C4
2C2.D8
2C2.D8

Smallest permutation representation of C323C4
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 71 97 39)(2 70 98 38)(3 69 99 37)(4 68 100 36)(5 67 101 35)(6 66 102 34)(7 65 103 33)(8 96 104 64)(9 95 105 63)(10 94 106 62)(11 93 107 61)(12 92 108 60)(13 91 109 59)(14 90 110 58)(15 89 111 57)(16 88 112 56)(17 87 113 55)(18 86 114 54)(19 85 115 53)(20 84 116 52)(21 83 117 51)(22 82 118 50)(23 81 119 49)(24 80 120 48)(25 79 121 47)(26 78 122 46)(27 77 123 45)(28 76 124 44)(29 75 125 43)(30 74 126 42)(31 73 127 41)(32 72 128 40)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,71,97,39)(2,70,98,38)(3,69,99,37)(4,68,100,36)(5,67,101,35)(6,66,102,34)(7,65,103,33)(8,96,104,64)(9,95,105,63)(10,94,106,62)(11,93,107,61)(12,92,108,60)(13,91,109,59)(14,90,110,58)(15,89,111,57)(16,88,112,56)(17,87,113,55)(18,86,114,54)(19,85,115,53)(20,84,116,52)(21,83,117,51)(22,82,118,50)(23,81,119,49)(24,80,120,48)(25,79,121,47)(26,78,122,46)(27,77,123,45)(28,76,124,44)(29,75,125,43)(30,74,126,42)(31,73,127,41)(32,72,128,40)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,71,97,39)(2,70,98,38)(3,69,99,37)(4,68,100,36)(5,67,101,35)(6,66,102,34)(7,65,103,33)(8,96,104,64)(9,95,105,63)(10,94,106,62)(11,93,107,61)(12,92,108,60)(13,91,109,59)(14,90,110,58)(15,89,111,57)(16,88,112,56)(17,87,113,55)(18,86,114,54)(19,85,115,53)(20,84,116,52)(21,83,117,51)(22,82,118,50)(23,81,119,49)(24,80,120,48)(25,79,121,47)(26,78,122,46)(27,77,123,45)(28,76,124,44)(29,75,125,43)(30,74,126,42)(31,73,127,41)(32,72,128,40) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,71,97,39),(2,70,98,38),(3,69,99,37),(4,68,100,36),(5,67,101,35),(6,66,102,34),(7,65,103,33),(8,96,104,64),(9,95,105,63),(10,94,106,62),(11,93,107,61),(12,92,108,60),(13,91,109,59),(14,90,110,58),(15,89,111,57),(16,88,112,56),(17,87,113,55),(18,86,114,54),(19,85,115,53),(20,84,116,52),(21,83,117,51),(22,82,118,50),(23,81,119,49),(24,80,120,48),(25,79,121,47),(26,78,122,46),(27,77,123,45),(28,76,124,44),(29,75,125,43),(30,74,126,42),(31,73,127,41),(32,72,128,40)]])

38 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F8A8B8C8D16A···16H32A···32P
order1222444444888816···1632···32
size1111221616161622222···22···2

38 irreducible representations

dim111122222222
type+++-+-+-++-
imageC1C2C2C4Q8D4Q16D8Q32D16D32Q64
kernelC323C4C163C4C2×C32C32C16C2×C8C8C2×C4C4C22C2C2
# reps121411224488

Matrix representation of C323C4 in GL3(𝔽97) generated by

100
0630
0077
,
2200
001
0960
G:=sub<GL(3,GF(97))| [1,0,0,0,63,0,0,0,77],[22,0,0,0,0,96,0,1,0] >;

C323C4 in GAP, Magma, Sage, TeX

C_{32}\rtimes_3C_4
% in TeX

G:=Group("C32:3C4");
// GroupNames label

G:=SmallGroup(128,155);
// by ID

G=gap.SmallGroup(128,155);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,148,422,268,1684,242,4037,124]);
// Polycyclic

G:=Group<a,b|a^32=b^4=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C323C4 in TeX

׿
×
𝔽