extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1D4 = S32⋊C4 | φ: D4/C1 → D4 ⊆ Aut C3×C6 | 12 | 4+ | (C3xC6).1D4 | 144,115 |
(C3×C6).2D4 = C3⋊S3.Q8 | φ: D4/C1 → D4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).2D4 | 144,116 |
(C3×C6).3D4 = C32⋊D8 | φ: D4/C1 → D4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).3D4 | 144,117 |
(C3×C6).4D4 = C32⋊2SD16 | φ: D4/C1 → D4 ⊆ Aut C3×C6 | 24 | 4- | (C3xC6).4D4 | 144,118 |
(C3×C6).5D4 = C32⋊Q16 | φ: D4/C1 → D4 ⊆ Aut C3×C6 | 48 | 4- | (C3xC6).5D4 | 144,119 |
(C3×C6).6D4 = C32⋊2D8 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).6D4 | 144,56 |
(C3×C6).7D4 = C3⋊D24 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 24 | 4+ | (C3xC6).7D4 | 144,57 |
(C3×C6).8D4 = Dic6⋊S3 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).8D4 | 144,58 |
(C3×C6).9D4 = D12.S3 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 48 | 4- | (C3xC6).9D4 | 144,59 |
(C3×C6).10D4 = C32⋊5SD16 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 24 | 4+ | (C3xC6).10D4 | 144,60 |
(C3×C6).11D4 = C32⋊2Q16 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).11D4 | 144,61 |
(C3×C6).12D4 = C32⋊3Q16 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 48 | 4- | (C3xC6).12D4 | 144,62 |
(C3×C6).13D4 = D6⋊Dic3 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).13D4 | 144,64 |
(C3×C6).14D4 = C6.D12 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 24 | | (C3xC6).14D4 | 144,65 |
(C3×C6).15D4 = Dic3⋊Dic3 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).15D4 | 144,66 |
(C3×C6).16D4 = C62.C22 | φ: D4/C2 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).16D4 | 144,67 |
(C3×C6).17D4 = C3×C24⋊C2 | φ: D4/C4 → C2 ⊆ Aut C3×C6 | 48 | 2 | (C3xC6).17D4 | 144,71 |
(C3×C6).18D4 = C3×D24 | φ: D4/C4 → C2 ⊆ Aut C3×C6 | 48 | 2 | (C3xC6).18D4 | 144,72 |
(C3×C6).19D4 = C3×Dic12 | φ: D4/C4 → C2 ⊆ Aut C3×C6 | 48 | 2 | (C3xC6).19D4 | 144,73 |
(C3×C6).20D4 = C3×C4⋊Dic3 | φ: D4/C4 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).20D4 | 144,78 |
(C3×C6).21D4 = C3×D6⋊C4 | φ: D4/C4 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).21D4 | 144,79 |
(C3×C6).22D4 = C24⋊2S3 | φ: D4/C4 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).22D4 | 144,87 |
(C3×C6).23D4 = C32⋊5D8 | φ: D4/C4 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).23D4 | 144,88 |
(C3×C6).24D4 = C32⋊5Q16 | φ: D4/C4 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).24D4 | 144,89 |
(C3×C6).25D4 = C12⋊Dic3 | φ: D4/C4 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).25D4 | 144,94 |
(C3×C6).26D4 = C6.11D12 | φ: D4/C4 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).26D4 | 144,95 |
(C3×C6).27D4 = C3×Dic3⋊C4 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).27D4 | 144,77 |
(C3×C6).28D4 = C3×D4⋊S3 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).28D4 | 144,80 |
(C3×C6).29D4 = C3×D4.S3 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).29D4 | 144,81 |
(C3×C6).30D4 = C3×Q8⋊2S3 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).30D4 | 144,82 |
(C3×C6).31D4 = C3×C3⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).31D4 | 144,83 |
(C3×C6).32D4 = C3×C6.D4 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 24 | | (C3xC6).32D4 | 144,84 |
(C3×C6).33D4 = C6.Dic6 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).33D4 | 144,93 |
(C3×C6).34D4 = C32⋊7D8 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).34D4 | 144,96 |
(C3×C6).35D4 = C32⋊9SD16 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).35D4 | 144,97 |
(C3×C6).36D4 = C32⋊11SD16 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).36D4 | 144,98 |
(C3×C6).37D4 = C32⋊7Q16 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).37D4 | 144,99 |
(C3×C6).38D4 = C62⋊5C4 | φ: D4/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).38D4 | 144,100 |
(C3×C6).39D4 = C32×C22⋊C4 | central extension (φ=1) | 72 | | (C3xC6).39D4 | 144,102 |
(C3×C6).40D4 = C32×C4⋊C4 | central extension (φ=1) | 144 | | (C3xC6).40D4 | 144,103 |
(C3×C6).41D4 = C32×D8 | central extension (φ=1) | 72 | | (C3xC6).41D4 | 144,106 |
(C3×C6).42D4 = C32×SD16 | central extension (φ=1) | 72 | | (C3xC6).42D4 | 144,107 |
(C3×C6).43D4 = C32×Q16 | central extension (φ=1) | 144 | | (C3xC6).43D4 | 144,108 |