Extensions 1→N→G→Q→1 with N=C4×C3⋊S3 and Q=C2

Direct product G=N×Q with N=C4×C3⋊S3 and Q=C2
dρLabelID
C2×C4×C3⋊S372C2xC4xC3:S3144,169

Semidirect products G=N:Q with N=C4×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C3⋊S3)⋊1C2 = D12⋊S3φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3):1C2144,139
(C4×C3⋊S3)⋊2C2 = D6⋊D6φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3):2C2144,145
(C4×C3⋊S3)⋊3C2 = D4×C3⋊S3φ: C2/C1C2 ⊆ Out C4×C3⋊S336(C4xC3:S3):3C2144,172
(C4×C3⋊S3)⋊4C2 = C12.D6φ: C2/C1C2 ⊆ Out C4×C3⋊S372(C4xC3:S3):4C2144,173
(C4×C3⋊S3)⋊5C2 = C12.26D6φ: C2/C1C2 ⊆ Out C4×C3⋊S372(C4xC3:S3):5C2144,175
(C4×C3⋊S3)⋊6C2 = D6.D6φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3):6C2144,141
(C4×C3⋊S3)⋊7C2 = C4×S32φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3):7C2144,143
(C4×C3⋊S3)⋊8C2 = C12.59D6φ: C2/C1C2 ⊆ Out C4×C3⋊S372(C4xC3:S3):8C2144,171

Non-split extensions G=N.Q with N=C4×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C3⋊S3).1C2 = Dic3.D6φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3).1C2144,140
(C4×C3⋊S3).2C2 = Q8×C3⋊S3φ: C2/C1C2 ⊆ Out C4×C3⋊S372(C4xC3:S3).2C2144,174
(C4×C3⋊S3).3C2 = C12.29D6φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3).3C2144,53
(C4×C3⋊S3).4C2 = C12.31D6φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3).4C2144,55
(C4×C3⋊S3).5C2 = C24⋊S3φ: C2/C1C2 ⊆ Out C4×C3⋊S372(C4xC3:S3).5C2144,86
(C4×C3⋊S3).6C2 = C3⋊S33C8φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3).6C2144,130
(C4×C3⋊S3).7C2 = C32⋊M4(2)φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3).7C2144,131
(C4×C3⋊S3).8C2 = C4×C32⋊C4φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3).8C2144,132
(C4×C3⋊S3).9C2 = C4⋊(C32⋊C4)φ: C2/C1C2 ⊆ Out C4×C3⋊S3244(C4xC3:S3).9C2144,133
(C4×C3⋊S3).10C2 = C8×C3⋊S3φ: trivial image72(C4xC3:S3).10C2144,85

׿
×
𝔽