Copied to
clipboard

G = D5⋊C32order 320 = 26·5

The semidirect product of D5 and C32 acting via C32/C16=C2

metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5⋊C32, C80.4C4, C16.5F5, D10.2C16, Dic5.2C16, C5⋊C323C2, C51(C2×C32), C52C8.5C8, (C4×D5).5C8, (C8×D5).7C4, C8.35(C2×F5), C10.1(C2×C16), C40.30(C2×C4), C20.16(C2×C8), (D5×C16).7C2, C2.1(D5⋊C16), C4.11(D5⋊C8), C52C16.13C22, SmallGroup(320,179)

Series: Derived Chief Lower central Upper central

C1C5 — D5⋊C32
C1C5C10C20C40C52C16C5⋊C32 — D5⋊C32
C5 — D5⋊C32
C1C16

Generators and relations for D5⋊C32
 G = < a,b,c | a5=b2=c32=1, bab=a-1, cac-1=a3, cbc-1=a2b >

5C2
5C2
5C22
5C4
5C2×C4
5C8
5C16
5C2×C8
5C32
5C2×C16
5C32
5C2×C32

Smallest permutation representation of D5⋊C32
On 160 points
Generators in S160
(1 55 112 72 151)(2 73 56 152 113)(3 153 74 114 57)(4 115 154 58 75)(5 59 116 76 155)(6 77 60 156 117)(7 157 78 118 61)(8 119 158 62 79)(9 63 120 80 159)(10 81 64 160 121)(11 129 82 122 33)(12 123 130 34 83)(13 35 124 84 131)(14 85 36 132 125)(15 133 86 126 37)(16 127 134 38 87)(17 39 128 88 135)(18 89 40 136 97)(19 137 90 98 41)(20 99 138 42 91)(21 43 100 92 139)(22 93 44 140 101)(23 141 94 102 45)(24 103 142 46 95)(25 47 104 96 143)(26 65 48 144 105)(27 145 66 106 49)(28 107 146 50 67)(29 51 108 68 147)(30 69 52 148 109)(31 149 70 110 53)(32 111 150 54 71)
(1 151)(2 113)(3 57)(4 75)(5 155)(6 117)(7 61)(8 79)(9 159)(10 121)(11 33)(12 83)(13 131)(14 125)(15 37)(16 87)(17 135)(18 97)(19 41)(20 91)(21 139)(22 101)(23 45)(24 95)(25 143)(26 105)(27 49)(28 67)(29 147)(30 109)(31 53)(32 71)(34 123)(35 84)(38 127)(39 88)(42 99)(43 92)(46 103)(47 96)(50 107)(51 68)(54 111)(55 72)(58 115)(59 76)(62 119)(63 80)(65 144)(69 148)(73 152)(77 156)(81 160)(85 132)(89 136)(93 140)(98 137)(102 141)(106 145)(110 149)(114 153)(118 157)(122 129)(126 133)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,55,112,72,151)(2,73,56,152,113)(3,153,74,114,57)(4,115,154,58,75)(5,59,116,76,155)(6,77,60,156,117)(7,157,78,118,61)(8,119,158,62,79)(9,63,120,80,159)(10,81,64,160,121)(11,129,82,122,33)(12,123,130,34,83)(13,35,124,84,131)(14,85,36,132,125)(15,133,86,126,37)(16,127,134,38,87)(17,39,128,88,135)(18,89,40,136,97)(19,137,90,98,41)(20,99,138,42,91)(21,43,100,92,139)(22,93,44,140,101)(23,141,94,102,45)(24,103,142,46,95)(25,47,104,96,143)(26,65,48,144,105)(27,145,66,106,49)(28,107,146,50,67)(29,51,108,68,147)(30,69,52,148,109)(31,149,70,110,53)(32,111,150,54,71), (1,151)(2,113)(3,57)(4,75)(5,155)(6,117)(7,61)(8,79)(9,159)(10,121)(11,33)(12,83)(13,131)(14,125)(15,37)(16,87)(17,135)(18,97)(19,41)(20,91)(21,139)(22,101)(23,45)(24,95)(25,143)(26,105)(27,49)(28,67)(29,147)(30,109)(31,53)(32,71)(34,123)(35,84)(38,127)(39,88)(42,99)(43,92)(46,103)(47,96)(50,107)(51,68)(54,111)(55,72)(58,115)(59,76)(62,119)(63,80)(65,144)(69,148)(73,152)(77,156)(81,160)(85,132)(89,136)(93,140)(98,137)(102,141)(106,145)(110,149)(114,153)(118,157)(122,129)(126,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,55,112,72,151)(2,73,56,152,113)(3,153,74,114,57)(4,115,154,58,75)(5,59,116,76,155)(6,77,60,156,117)(7,157,78,118,61)(8,119,158,62,79)(9,63,120,80,159)(10,81,64,160,121)(11,129,82,122,33)(12,123,130,34,83)(13,35,124,84,131)(14,85,36,132,125)(15,133,86,126,37)(16,127,134,38,87)(17,39,128,88,135)(18,89,40,136,97)(19,137,90,98,41)(20,99,138,42,91)(21,43,100,92,139)(22,93,44,140,101)(23,141,94,102,45)(24,103,142,46,95)(25,47,104,96,143)(26,65,48,144,105)(27,145,66,106,49)(28,107,146,50,67)(29,51,108,68,147)(30,69,52,148,109)(31,149,70,110,53)(32,111,150,54,71), (1,151)(2,113)(3,57)(4,75)(5,155)(6,117)(7,61)(8,79)(9,159)(10,121)(11,33)(12,83)(13,131)(14,125)(15,37)(16,87)(17,135)(18,97)(19,41)(20,91)(21,139)(22,101)(23,45)(24,95)(25,143)(26,105)(27,49)(28,67)(29,147)(30,109)(31,53)(32,71)(34,123)(35,84)(38,127)(39,88)(42,99)(43,92)(46,103)(47,96)(50,107)(51,68)(54,111)(55,72)(58,115)(59,76)(62,119)(63,80)(65,144)(69,148)(73,152)(77,156)(81,160)(85,132)(89,136)(93,140)(98,137)(102,141)(106,145)(110,149)(114,153)(118,157)(122,129)(126,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,55,112,72,151),(2,73,56,152,113),(3,153,74,114,57),(4,115,154,58,75),(5,59,116,76,155),(6,77,60,156,117),(7,157,78,118,61),(8,119,158,62,79),(9,63,120,80,159),(10,81,64,160,121),(11,129,82,122,33),(12,123,130,34,83),(13,35,124,84,131),(14,85,36,132,125),(15,133,86,126,37),(16,127,134,38,87),(17,39,128,88,135),(18,89,40,136,97),(19,137,90,98,41),(20,99,138,42,91),(21,43,100,92,139),(22,93,44,140,101),(23,141,94,102,45),(24,103,142,46,95),(25,47,104,96,143),(26,65,48,144,105),(27,145,66,106,49),(28,107,146,50,67),(29,51,108,68,147),(30,69,52,148,109),(31,149,70,110,53),(32,111,150,54,71)], [(1,151),(2,113),(3,57),(4,75),(5,155),(6,117),(7,61),(8,79),(9,159),(10,121),(11,33),(12,83),(13,131),(14,125),(15,37),(16,87),(17,135),(18,97),(19,41),(20,91),(21,139),(22,101),(23,45),(24,95),(25,143),(26,105),(27,49),(28,67),(29,147),(30,109),(31,53),(32,71),(34,123),(35,84),(38,127),(39,88),(42,99),(43,92),(46,103),(47,96),(50,107),(51,68),(54,111),(55,72),(58,115),(59,76),(62,119),(63,80),(65,144),(69,148),(73,152),(77,156),(81,160),(85,132),(89,136),(93,140),(98,137),(102,141),(106,145),(110,149),(114,153),(118,157),(122,129),(126,133)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])

80 conjugacy classes

class 1 2A2B2C4A4B4C4D 5 8A8B8C8D8E8F8G8H 10 16A···16H16I···16P20A20B32A···32AF40A40B40C40D80A···80H
order122244445888888881016···1616···16202032···324040404080···80
size1155115541111555541···15···5445···544444···4

80 irreducible representations

dim111111111144444
type+++++
imageC1C2C2C4C4C8C8C16C16C32F5C2×F5D5⋊C8D5⋊C16D5⋊C32
kernelD5⋊C32C5⋊C32D5×C16C80C8×D5C52C8C4×D5Dic5D10D5C16C8C4C2C1
# reps1212244883211248

Matrix representation of D5⋊C32 in GL4(𝔽641) generated by

640100
640010
640001
640000
,
016400
106400
006400
006401
,
619022221
0221442199
420199442221
420221220
G:=sub<GL(4,GF(641))| [640,640,640,640,1,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,1,0,0,0,640,640,640,640,0,0,0,1],[619,0,420,420,0,221,199,221,22,442,442,22,221,199,221,0] >;

D5⋊C32 in GAP, Magma, Sage, TeX

D_5\rtimes C_{32}
% in TeX

G:=Group("D5:C32");
// GroupNames label

G:=SmallGroup(320,179);
// by ID

G=gap.SmallGroup(320,179);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,64,58,80,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c|a^5=b^2=c^32=1,b*a*b=a^-1,c*a*c^-1=a^3,c*b*c^-1=a^2*b>;
// generators/relations

Export

Subgroup lattice of D5⋊C32 in TeX

׿
×
𝔽