Extensions 1→N→G→Q→1 with N=C2×Q82S3 and Q=C2

Direct product G=N×Q with N=C2×Q82S3 and Q=C2
dρLabelID
C22×Q82S396C2^2xQ8:2S3192,1366

Semidirect products G=N:Q with N=C2×Q82S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q82S3)⋊1C2 = D12.6D4φ: C2/C1C2 ⊆ Out C2×Q82S3488+(C2xQ8:2S3):1C2192,313
(C2×Q82S3)⋊2C2 = Q83D12φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):2C2192,365
(C2×Q82S3)⋊3C2 = D62SD16φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):3C2192,366
(C2×Q82S3)⋊4C2 = Q84D12φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):4C2192,369
(C2×Q82S3)⋊5C2 = C3⋊(C8⋊D4)φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):5C2192,371
(C2×Q82S3)⋊6C2 = D12.12D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):6C2192,378
(C2×Q82S3)⋊7C2 = Q82D12φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):7C2192,586
(C2×Q82S3)⋊8C2 = D12.36D4φ: C2/C1C2 ⊆ Out C2×Q82S348(C2xQ8:2S3):8C2192,605
(C2×Q82S3)⋊9C2 = D12.37D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):9C2192,606
(C2×Q82S3)⋊10C2 = C3⋊C824D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):10C2192,607
(C2×Q82S3)⋊11C2 = C3⋊C86D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):11C2192,608
(C2×Q82S3)⋊12C2 = D12.23D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):12C2192,616
(C2×Q82S3)⋊13C2 = C42.64D6φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):13C2192,617
(C2×Q82S3)⋊14C2 = C42.214D6φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):14C2192,618
(C2×Q82S3)⋊15C2 = C126SD16φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):15C2192,644
(C2×Q82S3)⋊16C2 = Dic35SD16φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):16C2192,722
(C2×Q82S3)⋊17C2 = D66SD16φ: C2/C1C2 ⊆ Out C2×Q82S348(C2xQ8:2S3):17C2192,728
(C2×Q82S3)⋊18C2 = C2415D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):18C2192,734
(C2×Q82S3)⋊19C2 = C249D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):19C2192,735
(C2×Q82S3)⋊20C2 = D12.17D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):20C2192,746
(C2×Q82S3)⋊21C2 = C24.28D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):21C2192,750
(C2×Q82S3)⋊22C2 = M4(2).15D6φ: C2/C1C2 ⊆ Out C2×Q82S3488+(C2xQ8:2S3):22C2192,762
(C2×Q82S3)⋊23C2 = (C3×Q8)⋊13D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):23C2192,786
(C2×Q82S3)⋊24C2 = (C3×D4)⋊14D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):24C2192,797
(C2×Q82S3)⋊25C2 = C2×S3×SD16φ: C2/C1C2 ⊆ Out C2×Q82S348(C2xQ8:2S3):25C2192,1317
(C2×Q82S3)⋊26C2 = C2×Q83D6φ: C2/C1C2 ⊆ Out C2×Q82S348(C2xQ8:2S3):26C2192,1318
(C2×Q82S3)⋊27C2 = C2×Q16⋊S3φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):27C2192,1323
(C2×Q82S3)⋊28C2 = C2×D24⋊C2φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):28C2192,1324
(C2×Q82S3)⋊29C2 = C24.C23φ: C2/C1C2 ⊆ Out C2×Q82S3488+(C2xQ8:2S3):29C2192,1337
(C2×Q82S3)⋊30C2 = C2×Q8.11D6φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3):30C2192,1367
(C2×Q82S3)⋊31C2 = C2×D4⋊D6φ: C2/C1C2 ⊆ Out C2×Q82S348(C2xQ8:2S3):31C2192,1379
(C2×Q82S3)⋊32C2 = D12.34C23φ: C2/C1C2 ⊆ Out C2×Q82S3488+(C2xQ8:2S3):32C2192,1396
(C2×Q82S3)⋊33C2 = C2×Q8.13D6φ: trivial image96(C2xQ8:2S3):33C2192,1380

Non-split extensions G=N.Q with N=C2×Q82S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q82S3).1C2 = Dic37SD16φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3).1C2192,347
(C2×Q82S3).2C2 = Q83(C4×S3)φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3).2C2192,376
(C2×Q82S3).3C2 = Dic3⋊SD16φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3).3C2192,377
(C2×Q82S3).4C2 = C42.56D6φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3).4C2192,585
(C2×Q82S3).5C2 = Q8.6D12φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3).5C2192,587
(C2×Q82S3).6C2 = C125SD16φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3).6C2192,642
(C2×Q82S3).7C2 = C42.80D6φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3).7C2192,645
(C2×Q82S3).8C2 = (C2×Q16)⋊S3φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3).8C2192,744
(C2×Q82S3).9C2 = C24.37D4φ: C2/C1C2 ⊆ Out C2×Q82S396(C2xQ8:2S3).9C2192,749
(C2×Q82S3).10C2 = C4×Q82S3φ: trivial image96(C2xQ8:2S3).10C2192,584

׿
×
𝔽