Copied to
clipboard

G = C2412D4order 192 = 26·3

12nd semidirect product of C24 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2412D4, (C2×D8)⋊9S3, (C6×D8)⋊10C2, C84(C3⋊D4), C35(C82D4), (C2×C8).86D6, D63D46C2, C8⋊Dic321C2, (C2×D4).66D6, C12.168(C2×D4), C12.94(C4○D4), D4⋊Dic331C2, C2.31(D8⋊S3), C6.52(C8⋊C22), (C2×Dic3).66D4, (C6×D4).85C22, (C22×S3).36D4, C22.259(S3×D4), C4.29(D42S3), C2.17(D63D4), C6.110(C4⋊D4), (C2×C12).436C23, (C2×C24).148C22, C4⋊Dic3.167C22, (C2×C8⋊S3)⋊7C2, C4.80(C2×C3⋊D4), (C2×C6).349(C2×D4), (S3×C2×C4).46C22, (C2×C3⋊C8).150C22, (C2×C4).526(C22×S3), SmallGroup(192,718)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C2412D4
C1C3C6C12C2×C12S3×C2×C4D63D4 — C2412D4
C3C6C2×C12 — C2412D4
C1C22C2×C4C2×D8

Generators and relations for C2412D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a11, cac=a5, cbc=b-1 >

Subgroups: 424 in 130 conjugacy classes, 41 normal (23 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C8, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, C22×C4, C2×D4, C2×D4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, D4⋊C4, C4.Q8, C4⋊D4, C2×M4(2), C2×D8, C8⋊S3, C2×C3⋊C8, C4⋊Dic3, C6.D4, C2×C24, C3×D8, S3×C2×C4, C2×C3⋊D4, C6×D4, C82D4, C8⋊Dic3, D4⋊Dic3, C2×C8⋊S3, D63D4, C6×D8, C2412D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C4⋊D4, C8⋊C22, S3×D4, D42S3, C2×C3⋊D4, C82D4, D8⋊S3, D63D4, C2412D4

Character table of C2412D4

 class 12A2B2C2D2E2F34A4B4C4D4E6A6B6C6D6E6F6G8A8B8C8D12A12B24A24B24C24D
 size 111188122221224242228888441212444444
ρ1111111111111111111111111111111    trivial
ρ21111-1-1-1111-111111-1-1-1-111-1-1111111    linear of order 2
ρ3111111-1111-1-1-1111111111-1-1111111    linear of order 2
ρ41111-1-111111-1-1111-1-1-1-11111111111    linear of order 2
ρ51111-1111111-11111-1-111-1-1-1-111-1-1-1-1    linear of order 2
ρ611111-1-1111-1-1111111-1-1-1-11111-1-1-1-1    linear of order 2
ρ71111-11-1111-11-1111-1-111-1-11111-1-1-1-1    linear of order 2
ρ811111-1111111-111111-1-1-1-1-1-111-1-1-1-1    linear of order 2
ρ922-2-200022-2000-22-200002-200-222-22-2    orthogonal lifted from D4
ρ10222200-22-2-220022200000000-2-20000    orthogonal lifted from D4
ρ112222-2-20-122000-1-1-111112200-1-1-1-1-1-1    orthogonal lifted from D6
ρ122222-220-122000-1-1-111-1-1-2-200-1-11111    orthogonal lifted from D6
ρ1322220022-2-2-20022200000000-2-20000    orthogonal lifted from D4
ρ1422222-20-122000-1-1-1-1-111-2-200-1-11111    orthogonal lifted from D6
ρ1522-2-200022-2000-22-20000-2200-22-22-22    orthogonal lifted from D4
ρ162222220-122000-1-1-1-1-1-1-12200-1-1-1-1-1-1    orthogonal lifted from S3
ρ1722-2-2000-12-20001-11--3-3-3--3-22001-11-11-1    complex lifted from C3⋊D4
ρ1822-2-2000-12-20001-11--3-3--3-32-2001-1-11-11    complex lifted from C3⋊D4
ρ1922-2-2000-12-20001-11-3--3-3--32-2001-1-11-11    complex lifted from C3⋊D4
ρ2022-2-2000-12-20001-11-3--3--3-3-22001-11-11-1    complex lifted from C3⋊D4
ρ2122-2-20002-22000-22-2000000-2i2i2-20000    complex lifted from C4○D4
ρ2222-2-20002-22000-22-20000002i-2i2-20000    complex lifted from C4○D4
ρ234-4-44000400000-4-4400000000000000    orthogonal lifted from C8⋊C22
ρ244444000-2-4-4000-2-2-200000000220000    orthogonal lifted from S3×D4
ρ254-44-40004000004-4-400000000000000    orthogonal lifted from C8⋊C22
ρ2644-4-4000-2-440002-2200000000-220000    symplectic lifted from D42S3, Schur index 2
ρ274-4-44000-20000022-20000000000-6--6--6-6    complex lifted from D8⋊S3
ρ284-44-4000-200000-2220000000000--6--6-6-6    complex lifted from D8⋊S3
ρ294-4-44000-20000022-20000000000--6-6-6--6    complex lifted from D8⋊S3
ρ304-44-4000-200000-2220000000000-6-6--6--6    complex lifted from D8⋊S3

Smallest permutation representation of C2412D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 43 84 68)(2 30 85 55)(3 41 86 66)(4 28 87 53)(5 39 88 64)(6 26 89 51)(7 37 90 62)(8 48 91 49)(9 35 92 60)(10 46 93 71)(11 33 94 58)(12 44 95 69)(13 31 96 56)(14 42 73 67)(15 29 74 54)(16 40 75 65)(17 27 76 52)(18 38 77 63)(19 25 78 50)(20 36 79 61)(21 47 80 72)(22 34 81 59)(23 45 82 70)(24 32 83 57)
(2 6)(3 11)(4 16)(5 21)(8 12)(9 17)(10 22)(14 18)(15 23)(20 24)(25 50)(26 55)(27 60)(28 65)(29 70)(30 51)(31 56)(32 61)(33 66)(34 71)(35 52)(36 57)(37 62)(38 67)(39 72)(40 53)(41 58)(42 63)(43 68)(44 49)(45 54)(46 59)(47 64)(48 69)(73 77)(74 82)(75 87)(76 92)(79 83)(80 88)(81 93)(85 89)(86 94)(91 95)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,43,84,68)(2,30,85,55)(3,41,86,66)(4,28,87,53)(5,39,88,64)(6,26,89,51)(7,37,90,62)(8,48,91,49)(9,35,92,60)(10,46,93,71)(11,33,94,58)(12,44,95,69)(13,31,96,56)(14,42,73,67)(15,29,74,54)(16,40,75,65)(17,27,76,52)(18,38,77,63)(19,25,78,50)(20,36,79,61)(21,47,80,72)(22,34,81,59)(23,45,82,70)(24,32,83,57), (2,6)(3,11)(4,16)(5,21)(8,12)(9,17)(10,22)(14,18)(15,23)(20,24)(25,50)(26,55)(27,60)(28,65)(29,70)(30,51)(31,56)(32,61)(33,66)(34,71)(35,52)(36,57)(37,62)(38,67)(39,72)(40,53)(41,58)(42,63)(43,68)(44,49)(45,54)(46,59)(47,64)(48,69)(73,77)(74,82)(75,87)(76,92)(79,83)(80,88)(81,93)(85,89)(86,94)(91,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,43,84,68)(2,30,85,55)(3,41,86,66)(4,28,87,53)(5,39,88,64)(6,26,89,51)(7,37,90,62)(8,48,91,49)(9,35,92,60)(10,46,93,71)(11,33,94,58)(12,44,95,69)(13,31,96,56)(14,42,73,67)(15,29,74,54)(16,40,75,65)(17,27,76,52)(18,38,77,63)(19,25,78,50)(20,36,79,61)(21,47,80,72)(22,34,81,59)(23,45,82,70)(24,32,83,57), (2,6)(3,11)(4,16)(5,21)(8,12)(9,17)(10,22)(14,18)(15,23)(20,24)(25,50)(26,55)(27,60)(28,65)(29,70)(30,51)(31,56)(32,61)(33,66)(34,71)(35,52)(36,57)(37,62)(38,67)(39,72)(40,53)(41,58)(42,63)(43,68)(44,49)(45,54)(46,59)(47,64)(48,69)(73,77)(74,82)(75,87)(76,92)(79,83)(80,88)(81,93)(85,89)(86,94)(91,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,43,84,68),(2,30,85,55),(3,41,86,66),(4,28,87,53),(5,39,88,64),(6,26,89,51),(7,37,90,62),(8,48,91,49),(9,35,92,60),(10,46,93,71),(11,33,94,58),(12,44,95,69),(13,31,96,56),(14,42,73,67),(15,29,74,54),(16,40,75,65),(17,27,76,52),(18,38,77,63),(19,25,78,50),(20,36,79,61),(21,47,80,72),(22,34,81,59),(23,45,82,70),(24,32,83,57)], [(2,6),(3,11),(4,16),(5,21),(8,12),(9,17),(10,22),(14,18),(15,23),(20,24),(25,50),(26,55),(27,60),(28,65),(29,70),(30,51),(31,56),(32,61),(33,66),(34,71),(35,52),(36,57),(37,62),(38,67),(39,72),(40,53),(41,58),(42,63),(43,68),(44,49),(45,54),(46,59),(47,64),(48,69),(73,77),(74,82),(75,87),(76,92),(79,83),(80,88),(81,93),(85,89),(86,94),(91,95)]])

Matrix representation of C2412D4 in GL6(𝔽73)

7200000
0720000
00005111
00006262
0011315111
0042426262
,
5930000
56140000
0066402461
003371249
00534733
0039684066
,
7200000
1510000
000100
001000
000001
000010

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,11,42,0,0,0,0,31,42,0,0,51,62,51,62,0,0,11,62,11,62],[59,56,0,0,0,0,3,14,0,0,0,0,0,0,66,33,5,39,0,0,40,7,34,68,0,0,24,12,7,40,0,0,61,49,33,66],[72,15,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C2412D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes_{12}D_4
% in TeX

G:=Group("C24:12D4");
// GroupNames label

G:=SmallGroup(192,718);
// by ID

G=gap.SmallGroup(192,718);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,1094,135,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^11,c*a*c=a^5,c*b*c=b^-1>;
// generators/relations

Export

Character table of C2412D4 in TeX

׿
×
𝔽