extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4⋊D4)⋊1C2 = D12⋊16D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):1C2 | 192,595 |
(C3×C4⋊D4)⋊2C2 = D12⋊17D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):2C2 | 192,596 |
(C3×C4⋊D4)⋊3C2 = C3⋊C8⋊22D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):3C2 | 192,597 |
(C3×C4⋊D4)⋊4C2 = C4⋊D4⋊S3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):4C2 | 192,598 |
(C3×C4⋊D4)⋊5C2 = C12⋊(C4○D4) | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):5C2 | 192,1155 |
(C3×C4⋊D4)⋊6C2 = C6.322+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):6C2 | 192,1156 |
(C3×C4⋊D4)⋊7C2 = Dic6⋊19D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):7C2 | 192,1157 |
(C3×C4⋊D4)⋊8C2 = Dic6⋊20D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):8C2 | 192,1158 |
(C3×C4⋊D4)⋊9C2 = C6.342+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):9C2 | 192,1160 |
(C3×C4⋊D4)⋊10C2 = S3×C4⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):10C2 | 192,1163 |
(C3×C4⋊D4)⋊11C2 = C6.372+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):11C2 | 192,1164 |
(C3×C4⋊D4)⋊12C2 = C4⋊C4⋊21D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):12C2 | 192,1165 |
(C3×C4⋊D4)⋊13C2 = C6.382+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):13C2 | 192,1166 |
(C3×C4⋊D4)⋊14C2 = C6.722- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):14C2 | 192,1167 |
(C3×C4⋊D4)⋊15C2 = D12⋊19D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):15C2 | 192,1168 |
(C3×C4⋊D4)⋊16C2 = C6.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):16C2 | 192,1169 |
(C3×C4⋊D4)⋊17C2 = C6.732- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):17C2 | 192,1170 |
(C3×C4⋊D4)⋊18C2 = D12⋊20D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):18C2 | 192,1171 |
(C3×C4⋊D4)⋊19C2 = C6.422+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):19C2 | 192,1172 |
(C3×C4⋊D4)⋊20C2 = C6.432+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):20C2 | 192,1173 |
(C3×C4⋊D4)⋊21C2 = C6.442+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):21C2 | 192,1174 |
(C3×C4⋊D4)⋊22C2 = C6.452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):22C2 | 192,1175 |
(C3×C4⋊D4)⋊23C2 = C6.462+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):23C2 | 192,1176 |
(C3×C4⋊D4)⋊24C2 = C6.1152+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):24C2 | 192,1177 |
(C3×C4⋊D4)⋊25C2 = C6.472+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):25C2 | 192,1178 |
(C3×C4⋊D4)⋊26C2 = C6.482+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):26C2 | 192,1179 |
(C3×C4⋊D4)⋊27C2 = C6.492+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):27C2 | 192,1180 |
(C3×C4⋊D4)⋊28C2 = C3×C22⋊D8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):28C2 | 192,880 |
(C3×C4⋊D4)⋊29C2 = C3×D4⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):29C2 | 192,882 |
(C3×C4⋊D4)⋊30C2 = C3×C8⋊7D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):30C2 | 192,899 |
(C3×C4⋊D4)⋊31C2 = C3×C8⋊2D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):31C2 | 192,902 |
(C3×C4⋊D4)⋊32C2 = C3×C23⋊3D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):32C2 | 192,1423 |
(C3×C4⋊D4)⋊33C2 = C3×C22.29C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):33C2 | 192,1424 |
(C3×C4⋊D4)⋊34C2 = C3×C22.31C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):34C2 | 192,1426 |
(C3×C4⋊D4)⋊35C2 = C3×C22.32C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):35C2 | 192,1427 |
(C3×C4⋊D4)⋊36C2 = C3×C22.34C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):36C2 | 192,1429 |
(C3×C4⋊D4)⋊37C2 = C3×D42 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):37C2 | 192,1434 |
(C3×C4⋊D4)⋊38C2 = C3×D4⋊5D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):38C2 | 192,1435 |
(C3×C4⋊D4)⋊39C2 = C3×D4⋊6D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):39C2 | 192,1436 |
(C3×C4⋊D4)⋊40C2 = C3×Q8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):40C2 | 192,1437 |
(C3×C4⋊D4)⋊41C2 = C3×Q8⋊6D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):41C2 | 192,1439 |
(C3×C4⋊D4)⋊42C2 = C3×C22.47C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):42C2 | 192,1442 |
(C3×C4⋊D4)⋊43C2 = C3×C22.49C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):43C2 | 192,1444 |
(C3×C4⋊D4)⋊44C2 = C3×C22.54C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4):44C2 | 192,1449 |
(C3×C4⋊D4)⋊45C2 = C3×C22.56C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4):45C2 | 192,1451 |
(C3×C4⋊D4)⋊46C2 = C3×C22.19C24 | φ: trivial image | 48 | | (C3xC4:D4):46C2 | 192,1414 |
(C3×C4⋊D4)⋊47C2 = C3×C22.26C24 | φ: trivial image | 96 | | (C3xC4:D4):47C2 | 192,1421 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4⋊D4).1C2 = (C2×C6).D8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).1C2 | 192,592 |
(C3×C4⋊D4).2C2 = C4⋊D4.S3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).2C2 | 192,593 |
(C3×C4⋊D4).3C2 = C6.Q16⋊C2 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).3C2 | 192,594 |
(C3×C4⋊D4).4C2 = Dic6⋊17D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).4C2 | 192,599 |
(C3×C4⋊D4).5C2 = C3⋊C8⋊23D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).5C2 | 192,600 |
(C3×C4⋊D4).6C2 = C3⋊C8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).6C2 | 192,601 |
(C3×C4⋊D4).7C2 = C4⋊C4.178D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).7C2 | 192,1159 |
(C3×C4⋊D4).8C2 = C6.702- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).8C2 | 192,1161 |
(C3×C4⋊D4).9C2 = C6.712- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).9C2 | 192,1162 |
(C3×C4⋊D4).10C2 = (C6×D4)⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4).10C2 | 192,96 |
(C3×C4⋊D4).11C2 = C3×C22.SD16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 48 | | (C3xC4:D4).11C2 | 192,133 |
(C3×C4⋊D4).12C2 = C3×Q8⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).12C2 | 192,881 |
(C3×C4⋊D4).13C2 = C3×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).13C2 | 192,898 |
(C3×C4⋊D4).14C2 = C3×C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).14C2 | 192,901 |
(C3×C4⋊D4).15C2 = C3×C22.D8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).15C2 | 192,913 |
(C3×C4⋊D4).16C2 = C3×C23.46D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).16C2 | 192,914 |
(C3×C4⋊D4).17C2 = C3×C23.19D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).17C2 | 192,915 |
(C3×C4⋊D4).18C2 = C3×C22.33C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).18C2 | 192,1428 |
(C3×C4⋊D4).19C2 = C3×C22.36C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊D4 | 96 | | (C3xC4:D4).19C2 | 192,1431 |
(C3×C4⋊D4).20C2 = C3×C23.36C23 | φ: trivial image | 96 | | (C3xC4:D4).20C2 | 192,1418 |