Extensions 1→N→G→Q→1 with N=C3×C4⋊D4 and Q=C2

Direct product G=N×Q with N=C3×C4⋊D4 and Q=C2
dρLabelID
C6×C4⋊D496C6xC4:D4192,1411

Semidirect products G=N:Q with N=C3×C4⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4⋊D4)⋊1C2 = D1216D4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):1C2192,595
(C3×C4⋊D4)⋊2C2 = D1217D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):2C2192,596
(C3×C4⋊D4)⋊3C2 = C3⋊C822D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):3C2192,597
(C3×C4⋊D4)⋊4C2 = C4⋊D4⋊S3φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):4C2192,598
(C3×C4⋊D4)⋊5C2 = C12⋊(C4○D4)φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):5C2192,1155
(C3×C4⋊D4)⋊6C2 = C6.322+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):6C2192,1156
(C3×C4⋊D4)⋊7C2 = Dic619D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):7C2192,1157
(C3×C4⋊D4)⋊8C2 = Dic620D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):8C2192,1158
(C3×C4⋊D4)⋊9C2 = C6.342+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):9C2192,1160
(C3×C4⋊D4)⋊10C2 = S3×C4⋊D4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):10C2192,1163
(C3×C4⋊D4)⋊11C2 = C6.372+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):11C2192,1164
(C3×C4⋊D4)⋊12C2 = C4⋊C421D6φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):12C2192,1165
(C3×C4⋊D4)⋊13C2 = C6.382+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):13C2192,1166
(C3×C4⋊D4)⋊14C2 = C6.722- 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):14C2192,1167
(C3×C4⋊D4)⋊15C2 = D1219D4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):15C2192,1168
(C3×C4⋊D4)⋊16C2 = C6.402+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):16C2192,1169
(C3×C4⋊D4)⋊17C2 = C6.732- 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):17C2192,1170
(C3×C4⋊D4)⋊18C2 = D1220D4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):18C2192,1171
(C3×C4⋊D4)⋊19C2 = C6.422+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):19C2192,1172
(C3×C4⋊D4)⋊20C2 = C6.432+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):20C2192,1173
(C3×C4⋊D4)⋊21C2 = C6.442+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):21C2192,1174
(C3×C4⋊D4)⋊22C2 = C6.452+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):22C2192,1175
(C3×C4⋊D4)⋊23C2 = C6.462+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):23C2192,1176
(C3×C4⋊D4)⋊24C2 = C6.1152+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):24C2192,1177
(C3×C4⋊D4)⋊25C2 = C6.472+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):25C2192,1178
(C3×C4⋊D4)⋊26C2 = C6.482+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):26C2192,1179
(C3×C4⋊D4)⋊27C2 = C6.492+ 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):27C2192,1180
(C3×C4⋊D4)⋊28C2 = C3×C22⋊D8φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):28C2192,880
(C3×C4⋊D4)⋊29C2 = C3×D4⋊D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):29C2192,882
(C3×C4⋊D4)⋊30C2 = C3×C87D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):30C2192,899
(C3×C4⋊D4)⋊31C2 = C3×C82D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):31C2192,902
(C3×C4⋊D4)⋊32C2 = C3×C233D4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):32C2192,1423
(C3×C4⋊D4)⋊33C2 = C3×C22.29C24φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):33C2192,1424
(C3×C4⋊D4)⋊34C2 = C3×C22.31C24φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):34C2192,1426
(C3×C4⋊D4)⋊35C2 = C3×C22.32C24φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):35C2192,1427
(C3×C4⋊D4)⋊36C2 = C3×C22.34C24φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):36C2192,1429
(C3×C4⋊D4)⋊37C2 = C3×D42φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):37C2192,1434
(C3×C4⋊D4)⋊38C2 = C3×D45D4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):38C2192,1435
(C3×C4⋊D4)⋊39C2 = C3×D46D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):39C2192,1436
(C3×C4⋊D4)⋊40C2 = C3×Q85D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):40C2192,1437
(C3×C4⋊D4)⋊41C2 = C3×Q86D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):41C2192,1439
(C3×C4⋊D4)⋊42C2 = C3×C22.47C24φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):42C2192,1442
(C3×C4⋊D4)⋊43C2 = C3×C22.49C24φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):43C2192,1444
(C3×C4⋊D4)⋊44C2 = C3×C22.54C24φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4):44C2192,1449
(C3×C4⋊D4)⋊45C2 = C3×C22.56C24φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4):45C2192,1451
(C3×C4⋊D4)⋊46C2 = C3×C22.19C24φ: trivial image48(C3xC4:D4):46C2192,1414
(C3×C4⋊D4)⋊47C2 = C3×C22.26C24φ: trivial image96(C3xC4:D4):47C2192,1421

Non-split extensions G=N.Q with N=C3×C4⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4⋊D4).1C2 = (C2×C6).D8φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).1C2192,592
(C3×C4⋊D4).2C2 = C4⋊D4.S3φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).2C2192,593
(C3×C4⋊D4).3C2 = C6.Q16⋊C2φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).3C2192,594
(C3×C4⋊D4).4C2 = Dic617D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).4C2192,599
(C3×C4⋊D4).5C2 = C3⋊C823D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).5C2192,600
(C3×C4⋊D4).6C2 = C3⋊C85D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).6C2192,601
(C3×C4⋊D4).7C2 = C4⋊C4.178D6φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).7C2192,1159
(C3×C4⋊D4).8C2 = C6.702- 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).8C2192,1161
(C3×C4⋊D4).9C2 = C6.712- 1+4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).9C2192,1162
(C3×C4⋊D4).10C2 = (C6×D4)⋊C4φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4).10C2192,96
(C3×C4⋊D4).11C2 = C3×C22.SD16φ: C2/C1C2 ⊆ Out C3×C4⋊D448(C3xC4:D4).11C2192,133
(C3×C4⋊D4).12C2 = C3×Q8⋊D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).12C2192,881
(C3×C4⋊D4).13C2 = C3×C88D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).13C2192,898
(C3×C4⋊D4).14C2 = C3×C8⋊D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).14C2192,901
(C3×C4⋊D4).15C2 = C3×C22.D8φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).15C2192,913
(C3×C4⋊D4).16C2 = C3×C23.46D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).16C2192,914
(C3×C4⋊D4).17C2 = C3×C23.19D4φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).17C2192,915
(C3×C4⋊D4).18C2 = C3×C22.33C24φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).18C2192,1428
(C3×C4⋊D4).19C2 = C3×C22.36C24φ: C2/C1C2 ⊆ Out C3×C4⋊D496(C3xC4:D4).19C2192,1431
(C3×C4⋊D4).20C2 = C3×C23.36C23φ: trivial image96(C3xC4:D4).20C2192,1418

׿
×
𝔽