Copied to
clipboard

G = D12.12D4order 192 = 26·3

12nd non-split extension by D12 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.12D4, C4.97(S3xD4), (C2xC8).20D6, Dic3:C8:8C2, C4:C4.157D6, Q8:C4:8S3, (C2xD24).3C2, (C2xQ8).48D6, Dic3:5D4:5C2, C6.72(C4oD8), C4.8(C4oD12), C12.129(C2xD4), C6.D8:13C2, C3:2(D4.2D4), C12.24(C4oD4), C12.23D4:2C2, C6.28(C4:D4), C2.19(Q8:3D6), C6.66(C8:C22), (C2xC24).20C22, (C2xDic3).36D4, C22.208(S3xD4), (C6xQ8).42C22, C2.31(Dic3:D4), (C2xC12).259C23, (C2xD12).69C22, C2.11(D24:C2), (C4xDic3).26C22, (C3xQ8:C4):8C2, (C2xQ8:2S3):6C2, (C2xC6).272(C2xD4), (C2xC3:C8).49C22, (C3xC4:C4).60C22, (C2xC4).366(C22xS3), SmallGroup(192,378)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D12.12D4
C1C3C6C2xC6C2xC12C2xD12Dic3:5D4 — D12.12D4
C3C6C2xC12 — D12.12D4
C1C22C2xC4Q8:C4

Generators and relations for D12.12D4
 G = < a,b,c,d | a12=b2=c4=1, d2=a3, bab=a-1, cac-1=a7, ad=da, bc=cb, dbd-1=a3b, dcd-1=a9c-1 >

Subgroups: 440 in 124 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, D6, C2xC6, C42, C22:C4, C4:C4, C2xC8, C2xC8, D8, SD16, C22xC4, C2xD4, C2xQ8, C3:C8, C24, C4xS3, D12, D12, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, D4:C4, Q8:C4, C4:C8, C4xD4, C4.4D4, C2xD8, C2xSD16, D24, C2xC3:C8, C4xDic3, D6:C4, Q8:2S3, C3xC4:C4, C2xC24, S3xC2xC4, C2xD12, C6xQ8, D4.2D4, C6.D8, Dic3:C8, C3xQ8:C4, Dic3:5D4, C2xD24, C2xQ8:2S3, C12.23D4, D12.12D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C22xS3, C4:D4, C4oD8, C8:C22, C4oD12, S3xD4, D4.2D4, Dic3:D4, Q8:3D6, D24:C2, D12.12D4

Smallest permutation representation of D12.12D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 24)(9 23)(10 22)(11 21)(12 20)(25 40)(26 39)(27 38)(28 37)(29 48)(30 47)(31 46)(32 45)(33 44)(34 43)(35 42)(36 41)(49 81)(50 80)(51 79)(52 78)(53 77)(54 76)(55 75)(56 74)(57 73)(58 84)(59 83)(60 82)(61 93)(62 92)(63 91)(64 90)(65 89)(66 88)(67 87)(68 86)(69 85)(70 96)(71 95)(72 94)
(1 37 93 51)(2 44 94 58)(3 39 95 53)(4 46 96 60)(5 41 85 55)(6 48 86 50)(7 43 87 57)(8 38 88 52)(9 45 89 59)(10 40 90 54)(11 47 91 49)(12 42 92 56)(13 34 67 73)(14 29 68 80)(15 36 69 75)(16 31 70 82)(17 26 71 77)(18 33 72 84)(19 28 61 79)(20 35 62 74)(21 30 63 81)(22 25 64 76)(23 32 65 83)(24 27 66 78)
(1 68 4 71 7 62 10 65)(2 69 5 72 8 63 11 66)(3 70 6 61 9 64 12 67)(13 95 16 86 19 89 22 92)(14 96 17 87 20 90 23 93)(15 85 18 88 21 91 24 94)(25 39 28 42 31 45 34 48)(26 40 29 43 32 46 35 37)(27 41 30 44 33 47 36 38)(49 75 52 78 55 81 58 84)(50 76 53 79 56 82 59 73)(51 77 54 80 57 83 60 74)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,24)(9,23)(10,22)(11,21)(12,20)(25,40)(26,39)(27,38)(28,37)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,84)(59,83)(60,82)(61,93)(62,92)(63,91)(64,90)(65,89)(66,88)(67,87)(68,86)(69,85)(70,96)(71,95)(72,94), (1,37,93,51)(2,44,94,58)(3,39,95,53)(4,46,96,60)(5,41,85,55)(6,48,86,50)(7,43,87,57)(8,38,88,52)(9,45,89,59)(10,40,90,54)(11,47,91,49)(12,42,92,56)(13,34,67,73)(14,29,68,80)(15,36,69,75)(16,31,70,82)(17,26,71,77)(18,33,72,84)(19,28,61,79)(20,35,62,74)(21,30,63,81)(22,25,64,76)(23,32,65,83)(24,27,66,78), (1,68,4,71,7,62,10,65)(2,69,5,72,8,63,11,66)(3,70,6,61,9,64,12,67)(13,95,16,86,19,89,22,92)(14,96,17,87,20,90,23,93)(15,85,18,88,21,91,24,94)(25,39,28,42,31,45,34,48)(26,40,29,43,32,46,35,37)(27,41,30,44,33,47,36,38)(49,75,52,78,55,81,58,84)(50,76,53,79,56,82,59,73)(51,77,54,80,57,83,60,74)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,24)(9,23)(10,22)(11,21)(12,20)(25,40)(26,39)(27,38)(28,37)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,84)(59,83)(60,82)(61,93)(62,92)(63,91)(64,90)(65,89)(66,88)(67,87)(68,86)(69,85)(70,96)(71,95)(72,94), (1,37,93,51)(2,44,94,58)(3,39,95,53)(4,46,96,60)(5,41,85,55)(6,48,86,50)(7,43,87,57)(8,38,88,52)(9,45,89,59)(10,40,90,54)(11,47,91,49)(12,42,92,56)(13,34,67,73)(14,29,68,80)(15,36,69,75)(16,31,70,82)(17,26,71,77)(18,33,72,84)(19,28,61,79)(20,35,62,74)(21,30,63,81)(22,25,64,76)(23,32,65,83)(24,27,66,78), (1,68,4,71,7,62,10,65)(2,69,5,72,8,63,11,66)(3,70,6,61,9,64,12,67)(13,95,16,86,19,89,22,92)(14,96,17,87,20,90,23,93)(15,85,18,88,21,91,24,94)(25,39,28,42,31,45,34,48)(26,40,29,43,32,46,35,37)(27,41,30,44,33,47,36,38)(49,75,52,78,55,81,58,84)(50,76,53,79,56,82,59,73)(51,77,54,80,57,83,60,74) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,24),(9,23),(10,22),(11,21),(12,20),(25,40),(26,39),(27,38),(28,37),(29,48),(30,47),(31,46),(32,45),(33,44),(34,43),(35,42),(36,41),(49,81),(50,80),(51,79),(52,78),(53,77),(54,76),(55,75),(56,74),(57,73),(58,84),(59,83),(60,82),(61,93),(62,92),(63,91),(64,90),(65,89),(66,88),(67,87),(68,86),(69,85),(70,96),(71,95),(72,94)], [(1,37,93,51),(2,44,94,58),(3,39,95,53),(4,46,96,60),(5,41,85,55),(6,48,86,50),(7,43,87,57),(8,38,88,52),(9,45,89,59),(10,40,90,54),(11,47,91,49),(12,42,92,56),(13,34,67,73),(14,29,68,80),(15,36,69,75),(16,31,70,82),(17,26,71,77),(18,33,72,84),(19,28,61,79),(20,35,62,74),(21,30,63,81),(22,25,64,76),(23,32,65,83),(24,27,66,78)], [(1,68,4,71,7,62,10,65),(2,69,5,72,8,63,11,66),(3,70,6,61,9,64,12,67),(13,95,16,86,19,89,22,92),(14,96,17,87,20,90,23,93),(15,85,18,88,21,91,24,94),(25,39,28,42,31,45,34,48),(26,40,29,43,32,46,35,37),(27,41,30,44,33,47,36,38),(49,75,52,78,55,81,58,84),(50,76,53,79,56,82,59,73),(51,77,54,80,57,83,60,74)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222222344444444666888812121212121224242424
size111112122422244668122224412124488884444

33 irreducible representations

dim1111111122222222244444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6C4oD4C4oD8C4oD12C8:C22S3xD4S3xD4Q8:3D6D24:C2
kernelD12.12D4C6.D8Dic3:C8C3xQ8:C4Dic3:5D4C2xD24C2xQ8:2S3C12.23D4Q8:C4D12C2xDic3C4:C4C2xC8C2xQ8C12C6C4C6C4C22C2C2
# reps1111111112211124411122

Matrix representation of D12.12D4 in GL4(F73) generated by

0100
72100
00722
00721
,
666600
59700
004132
005732
,
46000
04600
006112
006712
,
661400
59700
003241
00160
G:=sub<GL(4,GF(73))| [0,72,0,0,1,1,0,0,0,0,72,72,0,0,2,1],[66,59,0,0,66,7,0,0,0,0,41,57,0,0,32,32],[46,0,0,0,0,46,0,0,0,0,61,67,0,0,12,12],[66,59,0,0,14,7,0,0,0,0,32,16,0,0,41,0] >;

D12.12D4 in GAP, Magma, Sage, TeX

D_{12}._{12}D_4
% in TeX

G:=Group("D12.12D4");
// GroupNames label

G:=SmallGroup(192,378);
// by ID

G=gap.SmallGroup(192,378);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,555,184,1684,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=1,d^2=a^3,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=a^9*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<