Extensions 1→N→G→Q→1 with N=S3xC2xC8 and Q=C2

Direct product G=NxQ with N=S3xC2xC8 and Q=C2
dρLabelID
S3xC22xC896S3xC2^2xC8192,1295

Semidirect products G=N:Q with N=S3xC2xC8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC2xC8):1C2 = S3xC4oD8φ: C2/C1C2 ⊆ Out S3xC2xC8484(S3xC2xC8):1C2192,1326
(S3xC2xC8):2C2 = D6:2D8φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):2C2192,442
(S3xC2xC8):3C2 = D6:3D8φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):3C2192,716
(S3xC2xC8):4C2 = C2xS3xD8φ: C2/C1C2 ⊆ Out S3xC2xC848(S3xC2xC8):4C2192,1313
(S3xC2xC8):5C2 = C2xD8:3S3φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):5C2192,1315
(S3xC2xC8):6C2 = C2xD24:C2φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):6C2192,1324
(S3xC2xC8):7C2 = C8:8D12φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):7C2192,423
(S3xC2xC8):8C2 = C24:14D4φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):8C2192,730
(S3xC2xC8):9C2 = C2xS3xSD16φ: C2/C1C2 ⊆ Out S3xC2xC848(S3xC2xC8):9C2192,1317
(S3xC2xC8):10C2 = C2xQ8.7D6φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):10C2192,1320
(S3xC2xC8):11C2 = C8xD12φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):11C2192,245
(S3xC2xC8):12C2 = S3xC22:C8φ: C2/C1C2 ⊆ Out S3xC2xC848(S3xC2xC8):12C2192,283
(S3xC2xC8):13C2 = C3:D4:C8φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):13C2192,284
(S3xC2xC8):14C2 = D6:C8:C2φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):14C2192,286
(S3xC2xC8):15C2 = D6:2M4(2)φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):15C2192,287
(S3xC2xC8):16C2 = S3xD4:C4φ: C2/C1C2 ⊆ Out S3xC2xC848(S3xC2xC8):16C2192,328
(S3xC2xC8):17C2 = D4:2S3:C4φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):17C2192,331
(S3xC2xC8):18C2 = D6:D8φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):18C2192,334
(S3xC2xC8):19C2 = D6:SD16φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):19C2192,337
(S3xC2xC8):20C2 = C4:C4.150D6φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):20C2192,363
(S3xC2xC8):21C2 = D6:2SD16φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):21C2192,366
(S3xC2xC8):22C2 = D12:C8φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):22C2192,393
(S3xC2xC8):23C2 = D6:3M4(2)φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):23C2192,395
(S3xC2xC8):24C2 = C8xC3:D4φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):24C2192,668
(S3xC2xC8):25C2 = C2xC8oD12φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):25C2192,1297
(S3xC2xC8):26C2 = C8:9D12φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):26C2192,265
(S3xC2xC8):27C2 = C24:D4φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):27C2192,686
(S3xC2xC8):28C2 = C2xS3xM4(2)φ: C2/C1C2 ⊆ Out S3xC2xC848(S3xC2xC8):28C2192,1302
(S3xC2xC8):29C2 = C2xD12.C4φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8):29C2192,1303
(S3xC2xC8):30C2 = S3xC8oD4φ: C2/C1C2 ⊆ Out S3xC2xC8484(S3xC2xC8):30C2192,1308

Non-split extensions G=N.Q with N=S3xC2xC8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC2xC8).1C2 = S3xC8.C4φ: C2/C1C2 ⊆ Out S3xC2xC8484(S3xC2xC8).1C2192,451
(S3xC2xC8).2C2 = S3xC2.D8φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).2C2192,438
(S3xC2xC8).3C2 = C8.27(C4xS3)φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).3C2192,439
(S3xC2xC8).4C2 = D6:2Q16φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).4C2192,446
(S3xC2xC8).5C2 = D6:3Q16φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).5C2192,747
(S3xC2xC8).6C2 = C2xS3xQ16φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).6C2192,1322
(S3xC2xC8).7C2 = S3xC4.Q8φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).7C2192,418
(S3xC2xC8).8C2 = (S3xC8):C4φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).8C2192,419
(S3xC2xC8).9C2 = D6:C16φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).9C2192,66
(S3xC2xC8).10C2 = D6.C42φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).10C2192,248
(S3xC2xC8).11C2 = S3xQ8:C4φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).11C2192,360
(S3xC2xC8).12C2 = D6:1Q16φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).12C2192,372
(S3xC2xC8).13C2 = S3xC4:C8φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).13C2192,391
(S3xC2xC8).14C2 = C42.30D6φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).14C2192,398
(S3xC2xC8).15C2 = C2xD6.C8φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).15C2192,459
(S3xC2xC8).16C2 = S3xC8:C4φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).16C2192,263
(S3xC2xC8).17C2 = D6.4C42φ: C2/C1C2 ⊆ Out S3xC2xC896(S3xC2xC8).17C2192,267
(S3xC2xC8).18C2 = S3xM5(2)φ: C2/C1C2 ⊆ Out S3xC2xC8484(S3xC2xC8).18C2192,465
(S3xC2xC8).19C2 = S3xC4xC8φ: trivial image96(S3xC2xC8).19C2192,243
(S3xC2xC8).20C2 = S3xC2xC16φ: trivial image96(S3xC2xC8).20C2192,458

׿
x
:
Z
F
o
wr
Q
<