extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C2×C8)⋊1C2 = S3×C4○D8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 48 | 4 | (S3xC2xC8):1C2 | 192,1326 |
(S3×C2×C8)⋊2C2 = D6⋊2D8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):2C2 | 192,442 |
(S3×C2×C8)⋊3C2 = D6⋊3D8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):3C2 | 192,716 |
(S3×C2×C8)⋊4C2 = C2×S3×D8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 48 | | (S3xC2xC8):4C2 | 192,1313 |
(S3×C2×C8)⋊5C2 = C2×D8⋊3S3 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):5C2 | 192,1315 |
(S3×C2×C8)⋊6C2 = C2×D24⋊C2 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):6C2 | 192,1324 |
(S3×C2×C8)⋊7C2 = C8⋊8D12 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):7C2 | 192,423 |
(S3×C2×C8)⋊8C2 = C24⋊14D4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):8C2 | 192,730 |
(S3×C2×C8)⋊9C2 = C2×S3×SD16 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 48 | | (S3xC2xC8):9C2 | 192,1317 |
(S3×C2×C8)⋊10C2 = C2×Q8.7D6 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):10C2 | 192,1320 |
(S3×C2×C8)⋊11C2 = C8×D12 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):11C2 | 192,245 |
(S3×C2×C8)⋊12C2 = S3×C22⋊C8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 48 | | (S3xC2xC8):12C2 | 192,283 |
(S3×C2×C8)⋊13C2 = C3⋊D4⋊C8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):13C2 | 192,284 |
(S3×C2×C8)⋊14C2 = D6⋊C8⋊C2 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):14C2 | 192,286 |
(S3×C2×C8)⋊15C2 = D6⋊2M4(2) | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):15C2 | 192,287 |
(S3×C2×C8)⋊16C2 = S3×D4⋊C4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 48 | | (S3xC2xC8):16C2 | 192,328 |
(S3×C2×C8)⋊17C2 = D4⋊2S3⋊C4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):17C2 | 192,331 |
(S3×C2×C8)⋊18C2 = D6⋊D8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):18C2 | 192,334 |
(S3×C2×C8)⋊19C2 = D6⋊SD16 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):19C2 | 192,337 |
(S3×C2×C8)⋊20C2 = C4⋊C4.150D6 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):20C2 | 192,363 |
(S3×C2×C8)⋊21C2 = D6⋊2SD16 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):21C2 | 192,366 |
(S3×C2×C8)⋊22C2 = D12⋊C8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):22C2 | 192,393 |
(S3×C2×C8)⋊23C2 = D6⋊3M4(2) | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):23C2 | 192,395 |
(S3×C2×C8)⋊24C2 = C8×C3⋊D4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):24C2 | 192,668 |
(S3×C2×C8)⋊25C2 = C2×C8○D12 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):25C2 | 192,1297 |
(S3×C2×C8)⋊26C2 = C8⋊9D12 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):26C2 | 192,265 |
(S3×C2×C8)⋊27C2 = C24⋊D4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):27C2 | 192,686 |
(S3×C2×C8)⋊28C2 = C2×S3×M4(2) | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 48 | | (S3xC2xC8):28C2 | 192,1302 |
(S3×C2×C8)⋊29C2 = C2×D12.C4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8):29C2 | 192,1303 |
(S3×C2×C8)⋊30C2 = S3×C8○D4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 48 | 4 | (S3xC2xC8):30C2 | 192,1308 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C2×C8).1C2 = S3×C8.C4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 48 | 4 | (S3xC2xC8).1C2 | 192,451 |
(S3×C2×C8).2C2 = S3×C2.D8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).2C2 | 192,438 |
(S3×C2×C8).3C2 = C8.27(C4×S3) | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).3C2 | 192,439 |
(S3×C2×C8).4C2 = D6⋊2Q16 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).4C2 | 192,446 |
(S3×C2×C8).5C2 = D6⋊3Q16 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).5C2 | 192,747 |
(S3×C2×C8).6C2 = C2×S3×Q16 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).6C2 | 192,1322 |
(S3×C2×C8).7C2 = S3×C4.Q8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).7C2 | 192,418 |
(S3×C2×C8).8C2 = (S3×C8)⋊C4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).8C2 | 192,419 |
(S3×C2×C8).9C2 = D6⋊C16 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).9C2 | 192,66 |
(S3×C2×C8).10C2 = D6.C42 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).10C2 | 192,248 |
(S3×C2×C8).11C2 = S3×Q8⋊C4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).11C2 | 192,360 |
(S3×C2×C8).12C2 = D6⋊1Q16 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).12C2 | 192,372 |
(S3×C2×C8).13C2 = S3×C4⋊C8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).13C2 | 192,391 |
(S3×C2×C8).14C2 = C42.30D6 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).14C2 | 192,398 |
(S3×C2×C8).15C2 = C2×D6.C8 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).15C2 | 192,459 |
(S3×C2×C8).16C2 = S3×C8⋊C4 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).16C2 | 192,263 |
(S3×C2×C8).17C2 = D6.4C42 | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 96 | | (S3xC2xC8).17C2 | 192,267 |
(S3×C2×C8).18C2 = S3×M5(2) | φ: C2/C1 → C2 ⊆ Out S3×C2×C8 | 48 | 4 | (S3xC2xC8).18C2 | 192,465 |
(S3×C2×C8).19C2 = S3×C4×C8 | φ: trivial image | 96 | | (S3xC2xC8).19C2 | 192,243 |
(S3×C2×C8).20C2 = S3×C2×C16 | φ: trivial image | 96 | | (S3xC2xC8).20C2 | 192,458 |