extension | φ:Q→Out N | d | ρ | Label | ID |
(S3xC2xC8):1C2 = S3xC4oD8 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 48 | 4 | (S3xC2xC8):1C2 | 192,1326 |
(S3xC2xC8):2C2 = D6:2D8 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):2C2 | 192,442 |
(S3xC2xC8):3C2 = D6:3D8 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):3C2 | 192,716 |
(S3xC2xC8):4C2 = C2xS3xD8 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 48 | | (S3xC2xC8):4C2 | 192,1313 |
(S3xC2xC8):5C2 = C2xD8:3S3 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):5C2 | 192,1315 |
(S3xC2xC8):6C2 = C2xD24:C2 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):6C2 | 192,1324 |
(S3xC2xC8):7C2 = C8:8D12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):7C2 | 192,423 |
(S3xC2xC8):8C2 = C24:14D4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):8C2 | 192,730 |
(S3xC2xC8):9C2 = C2xS3xSD16 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 48 | | (S3xC2xC8):9C2 | 192,1317 |
(S3xC2xC8):10C2 = C2xQ8.7D6 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):10C2 | 192,1320 |
(S3xC2xC8):11C2 = C8xD12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):11C2 | 192,245 |
(S3xC2xC8):12C2 = S3xC22:C8 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 48 | | (S3xC2xC8):12C2 | 192,283 |
(S3xC2xC8):13C2 = C3:D4:C8 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):13C2 | 192,284 |
(S3xC2xC8):14C2 = D6:C8:C2 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):14C2 | 192,286 |
(S3xC2xC8):15C2 = D6:2M4(2) | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):15C2 | 192,287 |
(S3xC2xC8):16C2 = S3xD4:C4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 48 | | (S3xC2xC8):16C2 | 192,328 |
(S3xC2xC8):17C2 = D4:2S3:C4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):17C2 | 192,331 |
(S3xC2xC8):18C2 = D6:D8 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):18C2 | 192,334 |
(S3xC2xC8):19C2 = D6:SD16 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):19C2 | 192,337 |
(S3xC2xC8):20C2 = C4:C4.150D6 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):20C2 | 192,363 |
(S3xC2xC8):21C2 = D6:2SD16 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):21C2 | 192,366 |
(S3xC2xC8):22C2 = D12:C8 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):22C2 | 192,393 |
(S3xC2xC8):23C2 = D6:3M4(2) | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):23C2 | 192,395 |
(S3xC2xC8):24C2 = C8xC3:D4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):24C2 | 192,668 |
(S3xC2xC8):25C2 = C2xC8oD12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):25C2 | 192,1297 |
(S3xC2xC8):26C2 = C8:9D12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):26C2 | 192,265 |
(S3xC2xC8):27C2 = C24:D4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):27C2 | 192,686 |
(S3xC2xC8):28C2 = C2xS3xM4(2) | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 48 | | (S3xC2xC8):28C2 | 192,1302 |
(S3xC2xC8):29C2 = C2xD12.C4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 96 | | (S3xC2xC8):29C2 | 192,1303 |
(S3xC2xC8):30C2 = S3xC8oD4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC8 | 48 | 4 | (S3xC2xC8):30C2 | 192,1308 |