Extensions 1→N→G→Q→1 with N=Dic3 and Q=D8

Direct product G=N×Q with N=Dic3 and Q=D8
dρLabelID
Dic3×D896Dic3xD8192,708

Semidirect products G=N:Q with N=Dic3 and Q=D8
extensionφ:Q→Out NdρLabelID
Dic31D8 = C245D4φ: D8/C8C2 ⊆ Out Dic396Dic3:1D8192,710
Dic32D8 = D123D4φ: D8/D4C2 ⊆ Out Dic396Dic3:2D8192,345
Dic33D8 = Dic3⋊D8φ: D8/D4C2 ⊆ Out Dic396Dic3:3D8192,709
Dic34D8 = Dic34D8φ: trivial image96Dic3:4D8192,315
Dic35D8 = Dic35D8φ: trivial image96Dic3:5D8192,431

Non-split extensions G=N.Q with N=Dic3 and Q=D8
extensionφ:Q→Out NdρLabelID
Dic3.1D8 = Dic3.SD16φ: D8/C8C2 ⊆ Out Dic396Dic3.1D8192,319
Dic3.2D8 = C242Q8φ: D8/C8C2 ⊆ Out Dic3192Dic3.2D8192,433
Dic3.3D8 = S3×D16φ: D8/C8C2 ⊆ Out Dic3484+Dic3.3D8192,469
Dic3.4D8 = S3×SD32φ: D8/C8C2 ⊆ Out Dic3484Dic3.4D8192,472
Dic3.5D8 = S3×Q32φ: D8/C8C2 ⊆ Out Dic3964-Dic3.5D8192,476
Dic3.6D8 = Dic3.D8φ: D8/D4C2 ⊆ Out Dic396Dic3.6D8192,318
Dic3.7D8 = D122Q8φ: D8/D4C2 ⊆ Out Dic396Dic3.7D8192,449
Dic3.8D8 = D8⋊D6φ: D8/D4C2 ⊆ Out Dic3484Dic3.8D8192,470
Dic3.9D8 = D48⋊C2φ: D8/D4C2 ⊆ Out Dic3484+Dic3.9D8192,473
Dic3.10D8 = SD32⋊S3φ: D8/D4C2 ⊆ Out Dic3964-Dic3.10D8192,474
Dic3.11D8 = Q32⋊S3φ: D8/D4C2 ⊆ Out Dic3964Dic3.11D8192,477
Dic3.12D8 = D163S3φ: trivial image964-Dic3.12D8192,471
Dic3.13D8 = D6.2D8φ: trivial image964Dic3.13D8192,475
Dic3.14D8 = D485C2φ: trivial image964+Dic3.14D8192,478

׿
×
𝔽