Copied to
clipboard

G = D6.2D8order 192 = 26·3

2nd non-split extension by D6 of D8 acting via D8/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6.2D8, D8.5D6, SD32:3S3, C16.11D6, Q16.2D6, C24.19C23, C48.11C22, Dic3.13D8, D24.3C22, Dic12.4C22, C3:C8.14D4, C4.7(S3xD4), (S3xC16):5C2, C3:3(C4oD16), C3:D16:4C2, C48:C2:6C2, C3:Q32:2C2, C2.22(S3xD8), C6.38(C2xD8), D8:3S3:5C2, (C3xSD32):4C2, (C4xS3).21D4, C12.13(C2xD4), C3:C16.6C22, D24:C2:4C2, C8.25(C22xS3), (C3xD8).5C22, (S3xC8).12C22, (C3xQ16).3C22, SmallGroup(192,475)

Series: Derived Chief Lower central Upper central

C1C24 — D6.2D8
C1C3C6C12C24S3xC8D8:3S3 — D6.2D8
C3C6C12C24 — D6.2D8
C1C2C4C8SD32

Generators and relations for D6.2D8
 G = < a,b,c,d | a6=b2=d2=1, c8=a3, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a3b, dcd=c7 >

Subgroups: 300 in 84 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2xC4, D4, Q8, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C16, C16, C2xC8, D8, D8, SD16, Q16, Q16, C4oD4, C3:C8, C24, Dic6, C4xS3, C4xS3, D12, C2xDic3, C3:D4, C3xD4, C3xQ8, C2xC16, D16, SD32, SD32, Q32, C4oD8, C3:C16, C48, S3xC8, D24, Dic12, D4.S3, Q8:2S3, C3xD8, C3xQ16, D4:2S3, Q8:3S3, C4oD16, S3xC16, C48:C2, C3:D16, C3:Q32, C3xSD32, D8:3S3, D24:C2, D6.2D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C22xS3, C2xD8, S3xD4, C4oD16, S3xD8, D6.2D8

Smallest permutation representation of D6.2D8
On 96 points
Generators in S96
(1 58 44 9 50 36)(2 59 45 10 51 37)(3 60 46 11 52 38)(4 61 47 12 53 39)(5 62 48 13 54 40)(6 63 33 14 55 41)(7 64 34 15 56 42)(8 49 35 16 57 43)(17 71 96 25 79 88)(18 72 81 26 80 89)(19 73 82 27 65 90)(20 74 83 28 66 91)(21 75 84 29 67 92)(22 76 85 30 68 93)(23 77 86 31 69 94)(24 78 87 32 70 95)
(1 30)(2 31)(3 32)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(14 27)(15 28)(16 29)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 72)(41 73)(42 74)(43 75)(44 76)(45 77)(46 78)(47 79)(48 80)(49 92)(50 93)(51 94)(52 95)(53 96)(54 81)(55 82)(56 83)(57 84)(58 85)(59 86)(60 87)(61 88)(62 89)(63 90)(64 91)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 75)(2 66)(3 73)(4 80)(5 71)(6 78)(7 69)(8 76)(9 67)(10 74)(11 65)(12 72)(13 79)(14 70)(15 77)(16 68)(17 40)(18 47)(19 38)(20 45)(21 36)(22 43)(23 34)(24 41)(25 48)(26 39)(27 46)(28 37)(29 44)(30 35)(31 42)(32 33)(49 85)(50 92)(51 83)(52 90)(53 81)(54 88)(55 95)(56 86)(57 93)(58 84)(59 91)(60 82)(61 89)(62 96)(63 87)(64 94)

G:=sub<Sym(96)| (1,58,44,9,50,36)(2,59,45,10,51,37)(3,60,46,11,52,38)(4,61,47,12,53,39)(5,62,48,13,54,40)(6,63,33,14,55,41)(7,64,34,15,56,42)(8,49,35,16,57,43)(17,71,96,25,79,88)(18,72,81,26,80,89)(19,73,82,27,65,90)(20,74,83,28,66,91)(21,75,84,29,67,92)(22,76,85,30,68,93)(23,77,86,31,69,94)(24,78,87,32,70,95), (1,30)(2,31)(3,32)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,92)(50,93)(51,94)(52,95)(53,96)(54,81)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,75)(2,66)(3,73)(4,80)(5,71)(6,78)(7,69)(8,76)(9,67)(10,74)(11,65)(12,72)(13,79)(14,70)(15,77)(16,68)(17,40)(18,47)(19,38)(20,45)(21,36)(22,43)(23,34)(24,41)(25,48)(26,39)(27,46)(28,37)(29,44)(30,35)(31,42)(32,33)(49,85)(50,92)(51,83)(52,90)(53,81)(54,88)(55,95)(56,86)(57,93)(58,84)(59,91)(60,82)(61,89)(62,96)(63,87)(64,94)>;

G:=Group( (1,58,44,9,50,36)(2,59,45,10,51,37)(3,60,46,11,52,38)(4,61,47,12,53,39)(5,62,48,13,54,40)(6,63,33,14,55,41)(7,64,34,15,56,42)(8,49,35,16,57,43)(17,71,96,25,79,88)(18,72,81,26,80,89)(19,73,82,27,65,90)(20,74,83,28,66,91)(21,75,84,29,67,92)(22,76,85,30,68,93)(23,77,86,31,69,94)(24,78,87,32,70,95), (1,30)(2,31)(3,32)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,92)(50,93)(51,94)(52,95)(53,96)(54,81)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,75)(2,66)(3,73)(4,80)(5,71)(6,78)(7,69)(8,76)(9,67)(10,74)(11,65)(12,72)(13,79)(14,70)(15,77)(16,68)(17,40)(18,47)(19,38)(20,45)(21,36)(22,43)(23,34)(24,41)(25,48)(26,39)(27,46)(28,37)(29,44)(30,35)(31,42)(32,33)(49,85)(50,92)(51,83)(52,90)(53,81)(54,88)(55,95)(56,86)(57,93)(58,84)(59,91)(60,82)(61,89)(62,96)(63,87)(64,94) );

G=PermutationGroup([[(1,58,44,9,50,36),(2,59,45,10,51,37),(3,60,46,11,52,38),(4,61,47,12,53,39),(5,62,48,13,54,40),(6,63,33,14,55,41),(7,64,34,15,56,42),(8,49,35,16,57,43),(17,71,96,25,79,88),(18,72,81,26,80,89),(19,73,82,27,65,90),(20,74,83,28,66,91),(21,75,84,29,67,92),(22,76,85,30,68,93),(23,77,86,31,69,94),(24,78,87,32,70,95)], [(1,30),(2,31),(3,32),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(14,27),(15,28),(16,29),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,72),(41,73),(42,74),(43,75),(44,76),(45,77),(46,78),(47,79),(48,80),(49,92),(50,93),(51,94),(52,95),(53,96),(54,81),(55,82),(56,83),(57,84),(58,85),(59,86),(60,87),(61,88),(62,89),(63,90),(64,91)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,75),(2,66),(3,73),(4,80),(5,71),(6,78),(7,69),(8,76),(9,67),(10,74),(11,65),(12,72),(13,79),(14,70),(15,77),(16,68),(17,40),(18,47),(19,38),(20,45),(21,36),(22,43),(23,34),(24,41),(25,48),(26,39),(27,46),(28,37),(29,44),(30,35),(31,42),(32,33),(49,85),(50,92),(51,83),(52,90),(53,81),(54,88),(55,95),(56,86),(57,93),(58,84),(59,91),(60,82),(61,89),(62,96),(63,87),(64,94)]])

33 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B8A8B8C8D12A12B16A16B16C16D16E16F16G16H24A24B48A48B48C48D
order1222234444466888812121616161616161616242448484848
size1168242233824216226641622226666444444

33 irreducible representations

dim11111111222222222444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6D8D8C4oD16S3xD4S3xD8D6.2D8
kernelD6.2D8S3xC16C48:C2C3:D16C3:Q32C3xSD32D8:3S3D24:C2SD32C3:C8C4xS3C16D8Q16Dic3D6C3C4C2C1
# reps11111111111111228124

Matrix representation of D6.2D8 in GL4(F7) generated by

0025
2404
5204
2265
,
4555
4060
2566
5554
,
1522
4312
6632
1635
,
0526
2021
3301
1630
G:=sub<GL(4,GF(7))| [0,2,5,2,0,4,2,2,2,0,0,6,5,4,4,5],[4,4,2,5,5,0,5,5,5,6,6,5,5,0,6,4],[1,4,6,1,5,3,6,6,2,1,3,3,2,2,2,5],[0,2,3,1,5,0,3,6,2,2,0,3,6,1,1,0] >;

D6.2D8 in GAP, Magma, Sage, TeX

D_6._2D_8
% in TeX

G:=Group("D6.2D8");
// GroupNames label

G:=SmallGroup(192,475);
// by ID

G=gap.SmallGroup(192,475);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,758,135,184,346,185,192,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=d^2=1,c^8=a^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^3*b,d*c*d=c^7>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<