Extensions 1→N→G→Q→1 with N=C2xD24 and Q=C2

Direct product G=NxQ with N=C2xD24 and Q=C2
dρLabelID
C22xD2496C2^2xD24192,1299

Semidirect products G=N:Q with N=C2xD24 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD24):1C2 = C12:4D8φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):1C2192,254
(C2xD24):2C2 = D12:13D4φ: C2/C1C2 ⊆ Out C2xD2448(C2xD24):2C2192,291
(C2xD24):3C2 = D12:14D4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):3C2192,293
(C2xD24):4C2 = D4:D12φ: C2/C1C2 ⊆ Out C2xD2448(C2xD24):4C2192,332
(C2xD24):5C2 = D12:3D4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):5C2192,345
(C2xD24):6C2 = Q8:4D12φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):6C2192,369
(C2xD24):7C2 = C4:D24φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):7C2192,402
(C2xD24):8C2 = C2xD48φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):8C2192,461
(C2xD24):9C2 = C24:29D4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):9C2192,674
(C2xD24):10C2 = C8:D12φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):10C2192,271
(C2xD24):11C2 = C16:D6φ: C2/C1C2 ⊆ Out C2xD24484+(C2xD24):11C2192,467
(C2xD24):12C2 = C24:3D4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):12C2192,694
(C2xD24):13C2 = Q8.9D12φ: C2/C1C2 ⊆ Out C2xD24484+(C2xD24):13C2192,701
(C2xD24):14C2 = C2xC8:D6φ: C2/C1C2 ⊆ Out C2xD2448(C2xD24):14C2192,1305
(C2xD24):15C2 = D4.12D12φ: C2/C1C2 ⊆ Out C2xD24484+(C2xD24):15C2192,1311
(C2xD24):16C2 = D6:2D8φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):16C2192,442
(C2xD24):17C2 = C2xC3:D16φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):17C2192,705
(C2xD24):18C2 = C24:5D4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):18C2192,710
(C2xD24):19C2 = C2xS3xD8φ: C2/C1C2 ⊆ Out C2xD2448(C2xD24):19C2192,1313
(C2xD24):20C2 = C2xD24:C2φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):20C2192,1324
(C2xD24):21C2 = C24.19D4φ: C2/C1C2 ⊆ Out C2xD24484+(C2xD24):21C2192,456
(C2xD24):22C2 = Q16:D6φ: C2/C1C2 ⊆ Out C2xD24484+(C2xD24):22C2192,752
(C2xD24):23C2 = D8:15D6φ: C2/C1C2 ⊆ Out C2xD24484+(C2xD24):23C2192,1328
(C2xD24):24C2 = C24:7D4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):24C2192,424
(C2xD24):25C2 = C24:9D4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24):25C2192,735
(C2xD24):26C2 = C2xQ8:3D6φ: C2/C1C2 ⊆ Out C2xD2448(C2xD24):26C2192,1318
(C2xD24):27C2 = C2xC4oD24φ: trivial image96(C2xD24):27C2192,1300

Non-split extensions G=N.Q with N=C2xD24 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD24).1C2 = C2.D48φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).1C2192,68
(C2xD24).2C2 = C8.8D12φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).2C2192,255
(C2xD24).3C2 = D12.12D4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).3C2192,378
(C2xD24).4C2 = D12.19D4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).4C2192,403
(C2xD24).5C2 = C2xC48:C2φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).5C2192,462
(C2xD24).6C2 = M5(2):S3φ: C2/C1C2 ⊆ Out C2xD24484+(C2xD24).6C2192,75
(C2xD24).7C2 = D24:C4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).7C2192,270
(C2xD24).8C2 = C6.D16φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).8C2192,50
(C2xD24).9C2 = Dic3:5D8φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).9C2192,431
(C2xD24).10C2 = C2xC8.6D6φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).10C2192,737
(C2xD24).11C2 = C24.28D4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).11C2192,750
(C2xD24).12C2 = D24.C4φ: C2/C1C2 ⊆ Out C2xD24484+(C2xD24).12C2192,54
(C2xD24).13C2 = D24:9C4φ: C2/C1C2 ⊆ Out C2xD2496(C2xD24).13C2192,428
(C2xD24).14C2 = C4xD24φ: trivial image96(C2xD24).14C2192,251

׿
x
:
Z
F
o
wr
Q
<