Extensions 1→N→G→Q→1 with N=C18 and Q=D6

Direct product G=N×Q with N=C18 and Q=D6
dρLabelID
S3×C2×C1872S3xC2xC18216,109

Semidirect products G=N:Q with N=C18 and Q=D6
extensionφ:Q→Aut NdρLabelID
C181D6 = C2×S3×D9φ: D6/S3C2 ⊆ Aut C18364+C18:1D6216,101
C182D6 = C22×C9⋊S3φ: D6/C6C2 ⊆ Aut C18108C18:2D6216,112

Non-split extensions G=N.Q with N=C18 and Q=D6
extensionφ:Q→Aut NdρLabelID
C18.1D6 = C9⋊Dic6φ: D6/S3C2 ⊆ Aut C18724-C18.1D6216,26
C18.2D6 = Dic3×D9φ: D6/S3C2 ⊆ Aut C18724-C18.2D6216,27
C18.3D6 = C18.D6φ: D6/S3C2 ⊆ Aut C18364+C18.3D6216,28
C18.4D6 = C3⋊D36φ: D6/S3C2 ⊆ Aut C18364+C18.4D6216,29
C18.5D6 = S3×Dic9φ: D6/S3C2 ⊆ Aut C18724-C18.5D6216,30
C18.6D6 = D6⋊D9φ: D6/S3C2 ⊆ Aut C18724-C18.6D6216,31
C18.7D6 = C9⋊D12φ: D6/S3C2 ⊆ Aut C18364+C18.7D6216,32
C18.8D6 = Dic54φ: D6/C6C2 ⊆ Aut C182162-C18.8D6216,4
C18.9D6 = C4×D27φ: D6/C6C2 ⊆ Aut C181082C18.9D6216,5
C18.10D6 = D108φ: D6/C6C2 ⊆ Aut C181082+C18.10D6216,6
C18.11D6 = C2×Dic27φ: D6/C6C2 ⊆ Aut C18216C18.11D6216,7
C18.12D6 = C27⋊D4φ: D6/C6C2 ⊆ Aut C181082C18.12D6216,8
C18.13D6 = C22×D27φ: D6/C6C2 ⊆ Aut C18108C18.13D6216,23
C18.14D6 = C12.D9φ: D6/C6C2 ⊆ Aut C18216C18.14D6216,63
C18.15D6 = C4×C9⋊S3φ: D6/C6C2 ⊆ Aut C18108C18.15D6216,64
C18.16D6 = C36⋊S3φ: D6/C6C2 ⊆ Aut C18108C18.16D6216,65
C18.17D6 = C2×C9⋊Dic3φ: D6/C6C2 ⊆ Aut C18216C18.17D6216,69
C18.18D6 = C6.D18φ: D6/C6C2 ⊆ Aut C18108C18.18D6216,70
C18.19D6 = C9×Dic6central extension (φ=1)722C18.19D6216,44
C18.20D6 = S3×C36central extension (φ=1)722C18.20D6216,47
C18.21D6 = C9×D12central extension (φ=1)722C18.21D6216,48
C18.22D6 = Dic3×C18central extension (φ=1)72C18.22D6216,56
C18.23D6 = C9×C3⋊D4central extension (φ=1)362C18.23D6216,58

׿
×
𝔽