extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1D6 = C9⋊Dic6 | φ: D6/S3 → C2 ⊆ Aut C18 | 72 | 4- | C18.1D6 | 216,26 |
C18.2D6 = Dic3×D9 | φ: D6/S3 → C2 ⊆ Aut C18 | 72 | 4- | C18.2D6 | 216,27 |
C18.3D6 = C18.D6 | φ: D6/S3 → C2 ⊆ Aut C18 | 36 | 4+ | C18.3D6 | 216,28 |
C18.4D6 = C3⋊D36 | φ: D6/S3 → C2 ⊆ Aut C18 | 36 | 4+ | C18.4D6 | 216,29 |
C18.5D6 = S3×Dic9 | φ: D6/S3 → C2 ⊆ Aut C18 | 72 | 4- | C18.5D6 | 216,30 |
C18.6D6 = D6⋊D9 | φ: D6/S3 → C2 ⊆ Aut C18 | 72 | 4- | C18.6D6 | 216,31 |
C18.7D6 = C9⋊D12 | φ: D6/S3 → C2 ⊆ Aut C18 | 36 | 4+ | C18.7D6 | 216,32 |
C18.8D6 = Dic54 | φ: D6/C6 → C2 ⊆ Aut C18 | 216 | 2- | C18.8D6 | 216,4 |
C18.9D6 = C4×D27 | φ: D6/C6 → C2 ⊆ Aut C18 | 108 | 2 | C18.9D6 | 216,5 |
C18.10D6 = D108 | φ: D6/C6 → C2 ⊆ Aut C18 | 108 | 2+ | C18.10D6 | 216,6 |
C18.11D6 = C2×Dic27 | φ: D6/C6 → C2 ⊆ Aut C18 | 216 | | C18.11D6 | 216,7 |
C18.12D6 = C27⋊D4 | φ: D6/C6 → C2 ⊆ Aut C18 | 108 | 2 | C18.12D6 | 216,8 |
C18.13D6 = C22×D27 | φ: D6/C6 → C2 ⊆ Aut C18 | 108 | | C18.13D6 | 216,23 |
C18.14D6 = C12.D9 | φ: D6/C6 → C2 ⊆ Aut C18 | 216 | | C18.14D6 | 216,63 |
C18.15D6 = C4×C9⋊S3 | φ: D6/C6 → C2 ⊆ Aut C18 | 108 | | C18.15D6 | 216,64 |
C18.16D6 = C36⋊S3 | φ: D6/C6 → C2 ⊆ Aut C18 | 108 | | C18.16D6 | 216,65 |
C18.17D6 = C2×C9⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C18 | 216 | | C18.17D6 | 216,69 |
C18.18D6 = C6.D18 | φ: D6/C6 → C2 ⊆ Aut C18 | 108 | | C18.18D6 | 216,70 |
C18.19D6 = C9×Dic6 | central extension (φ=1) | 72 | 2 | C18.19D6 | 216,44 |
C18.20D6 = S3×C36 | central extension (φ=1) | 72 | 2 | C18.20D6 | 216,47 |
C18.21D6 = C9×D12 | central extension (φ=1) | 72 | 2 | C18.21D6 | 216,48 |
C18.22D6 = Dic3×C18 | central extension (φ=1) | 72 | | C18.22D6 | 216,56 |
C18.23D6 = C9×C3⋊D4 | central extension (φ=1) | 36 | 2 | C18.23D6 | 216,58 |