Copied to
clipboard

G = M4(2).15D14order 448 = 26·7

15th non-split extension by M4(2) of D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2).15D14, C7⋊C8.32D4, (C7×D4).15D4, C4.180(D4×D7), (C7×Q8).15D4, C8.C222D7, C4○D4.26D14, C28.199(C2×D4), C77(D4.3D4), D4.6(C7⋊D4), Q8.Dic77C2, (C2×Q8).69D14, Q8.6(C7⋊D4), D4⋊D14.2C2, C28.10D49C2, (C2×C28).18C23, C28.46D412C2, C28.53D411C2, (Q8×C14).96C22, C14.126(C4⋊D4), (C2×D28).131C22, C4.Dic7.27C22, C2.32(Dic7⋊D4), C22.15(D42D7), (C7×M4(2)).25C22, (C2×Q8⋊D7)⋊22C2, C4.55(C2×C7⋊D4), (C7×C8.C22)⋊6C2, (C2×C7⋊C8).172C22, (C2×C4).18(C22×D7), (C2×C14).38(C4○D4), (C7×C4○D4).16C22, SmallGroup(448,737)

Series: Derived Chief Lower central Upper central

C1C2×C28 — M4(2).15D14
C1C7C14C28C2×C28C2×D28D4⋊D14 — M4(2).15D14
C7C14C2×C28 — M4(2).15D14
C1C2C2×C4C8.C22

Generators and relations for M4(2).15D14
 G = < a,b,c,d | a8=b2=c14=1, d2=a2, bab=a5, cac-1=a3, dad-1=a3b, cbc-1=dbd-1=a4b, dcd-1=a2c-1 >

Subgroups: 524 in 104 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C2×C8, M4(2), M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, C28, C28, D14, C2×C14, C2×C14, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, C7⋊C8, C7⋊C8, C56, D28, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C22×D7, D4.3D4, C2×C7⋊C8, C2×C7⋊C8, C4.Dic7, C4.Dic7, D4⋊D7, Q8⋊D7, C7×M4(2), C7×SD16, C7×Q16, C2×D28, Q8×C14, C7×C4○D4, C28.53D4, C28.46D4, C28.10D4, C2×Q8⋊D7, Q8.Dic7, D4⋊D14, C7×C8.C22, M4(2).15D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, C7⋊D4, C22×D7, D4.3D4, D4×D7, D42D7, C2×C7⋊D4, Dic7⋊D4, M4(2).15D14

Smallest permutation representation of M4(2).15D14
On 112 points
Generators in S112
(1 63 41 77 53 95 108 22)(2 78 109 64 54 23 42 96)(3 65 29 79 55 97 110 24)(4 80 111 66 56 25 30 98)(5 67 31 81 43 85 112 26)(6 82 99 68 44 27 32 86)(7 69 33 83 45 87 100 28)(8 84 101 70 46 15 34 88)(9 57 35 71 47 89 102 16)(10 72 103 58 48 17 36 90)(11 59 37 73 49 91 104 18)(12 74 105 60 50 19 38 92)(13 61 39 75 51 93 106 20)(14 76 107 62 52 21 40 94)
(2 54)(4 56)(6 44)(8 46)(10 48)(12 50)(14 52)(16 71)(18 73)(20 75)(22 77)(24 79)(26 81)(28 83)(30 111)(32 99)(34 101)(36 103)(38 105)(40 107)(42 109)(57 89)(59 91)(61 93)(63 95)(65 97)(67 85)(69 87)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 14 41 107 53 52 108 40)(2 39 109 51 54 106 42 13)(3 12 29 105 55 50 110 38)(4 37 111 49 56 104 30 11)(5 10 31 103 43 48 112 36)(6 35 99 47 44 102 32 9)(7 8 33 101 45 46 100 34)(15 87 88 28 84 69 70 83)(16 82 57 68 71 27 89 86)(17 85 90 26 72 67 58 81)(18 80 59 66 73 25 91 98)(19 97 92 24 74 65 60 79)(20 78 61 64 75 23 93 96)(21 95 94 22 76 63 62 77)

G:=sub<Sym(112)| (1,63,41,77,53,95,108,22)(2,78,109,64,54,23,42,96)(3,65,29,79,55,97,110,24)(4,80,111,66,56,25,30,98)(5,67,31,81,43,85,112,26)(6,82,99,68,44,27,32,86)(7,69,33,83,45,87,100,28)(8,84,101,70,46,15,34,88)(9,57,35,71,47,89,102,16)(10,72,103,58,48,17,36,90)(11,59,37,73,49,91,104,18)(12,74,105,60,50,19,38,92)(13,61,39,75,51,93,106,20)(14,76,107,62,52,21,40,94), (2,54)(4,56)(6,44)(8,46)(10,48)(12,50)(14,52)(16,71)(18,73)(20,75)(22,77)(24,79)(26,81)(28,83)(30,111)(32,99)(34,101)(36,103)(38,105)(40,107)(42,109)(57,89)(59,91)(61,93)(63,95)(65,97)(67,85)(69,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14,41,107,53,52,108,40)(2,39,109,51,54,106,42,13)(3,12,29,105,55,50,110,38)(4,37,111,49,56,104,30,11)(5,10,31,103,43,48,112,36)(6,35,99,47,44,102,32,9)(7,8,33,101,45,46,100,34)(15,87,88,28,84,69,70,83)(16,82,57,68,71,27,89,86)(17,85,90,26,72,67,58,81)(18,80,59,66,73,25,91,98)(19,97,92,24,74,65,60,79)(20,78,61,64,75,23,93,96)(21,95,94,22,76,63,62,77)>;

G:=Group( (1,63,41,77,53,95,108,22)(2,78,109,64,54,23,42,96)(3,65,29,79,55,97,110,24)(4,80,111,66,56,25,30,98)(5,67,31,81,43,85,112,26)(6,82,99,68,44,27,32,86)(7,69,33,83,45,87,100,28)(8,84,101,70,46,15,34,88)(9,57,35,71,47,89,102,16)(10,72,103,58,48,17,36,90)(11,59,37,73,49,91,104,18)(12,74,105,60,50,19,38,92)(13,61,39,75,51,93,106,20)(14,76,107,62,52,21,40,94), (2,54)(4,56)(6,44)(8,46)(10,48)(12,50)(14,52)(16,71)(18,73)(20,75)(22,77)(24,79)(26,81)(28,83)(30,111)(32,99)(34,101)(36,103)(38,105)(40,107)(42,109)(57,89)(59,91)(61,93)(63,95)(65,97)(67,85)(69,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14,41,107,53,52,108,40)(2,39,109,51,54,106,42,13)(3,12,29,105,55,50,110,38)(4,37,111,49,56,104,30,11)(5,10,31,103,43,48,112,36)(6,35,99,47,44,102,32,9)(7,8,33,101,45,46,100,34)(15,87,88,28,84,69,70,83)(16,82,57,68,71,27,89,86)(17,85,90,26,72,67,58,81)(18,80,59,66,73,25,91,98)(19,97,92,24,74,65,60,79)(20,78,61,64,75,23,93,96)(21,95,94,22,76,63,62,77) );

G=PermutationGroup([[(1,63,41,77,53,95,108,22),(2,78,109,64,54,23,42,96),(3,65,29,79,55,97,110,24),(4,80,111,66,56,25,30,98),(5,67,31,81,43,85,112,26),(6,82,99,68,44,27,32,86),(7,69,33,83,45,87,100,28),(8,84,101,70,46,15,34,88),(9,57,35,71,47,89,102,16),(10,72,103,58,48,17,36,90),(11,59,37,73,49,91,104,18),(12,74,105,60,50,19,38,92),(13,61,39,75,51,93,106,20),(14,76,107,62,52,21,40,94)], [(2,54),(4,56),(6,44),(8,46),(10,48),(12,50),(14,52),(16,71),(18,73),(20,75),(22,77),(24,79),(26,81),(28,83),(30,111),(32,99),(34,101),(36,103),(38,105),(40,107),(42,109),(57,89),(59,91),(61,93),(63,95),(65,97),(67,85),(69,87)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,14,41,107,53,52,108,40),(2,39,109,51,54,106,42,13),(3,12,29,105,55,50,110,38),(4,37,111,49,56,104,30,11),(5,10,31,103,43,48,112,36),(6,35,99,47,44,102,32,9),(7,8,33,101,45,46,100,34),(15,87,88,28,84,69,70,83),(16,82,57,68,71,27,89,86),(17,85,90,26,72,67,58,81),(18,80,59,66,73,25,91,98),(19,97,92,24,74,65,60,79),(20,78,61,64,75,23,93,96),(21,95,94,22,76,63,62,77)]])

49 conjugacy classes

class 1 2A2B2C2D4A4B4C4D7A7B7C8A8B8C8D8E8F8G14A14B14C14D14E14F14G14H14I28A···28F28G···28O56A···56F
order122224444777888888814141414141414141428···2828···2856···56
size112456224822281414282828562224448884···48···88···8

49 irreducible representations

dim1111111122222222224448
type++++++++++++++++-+
imageC1C2C2C2C2C2C2C2D4D4D4D7C4○D4D14D14D14C7⋊D4C7⋊D4D4.3D4D4×D7D42D7M4(2).15D14
kernelM4(2).15D14C28.53D4C28.46D4C28.10D4C2×Q8⋊D7Q8.Dic7D4⋊D14C7×C8.C22C7⋊C8C7×D4C7×Q8C8.C22C2×C14M4(2)C2×Q8C4○D4D4Q8C7C4C22C1
# reps1111111121132333662333

Matrix representation of M4(2).15D14 in GL6(𝔽113)

010000
100000
00150087
002170
000011272
00091098
,
11200000
01120000
001000
000100
0064321120
006200112
,
101160000
161010000
006991720
00880081
0011874453
0010556850
,
101160000
97120000
00189172111
00250032
00838744109
00107498551

G:=sub<GL(6,GF(113))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,15,2,0,0,0,0,0,1,0,91,0,0,0,7,112,0,0,0,87,0,72,98],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,64,62,0,0,0,1,32,0,0,0,0,0,112,0,0,0,0,0,0,112],[101,16,0,0,0,0,16,101,0,0,0,0,0,0,69,88,11,105,0,0,91,0,87,56,0,0,72,0,44,85,0,0,0,81,53,0],[101,97,0,0,0,0,16,12,0,0,0,0,0,0,18,25,83,107,0,0,91,0,87,49,0,0,72,0,44,85,0,0,111,32,109,51] >;

M4(2).15D14 in GAP, Magma, Sage, TeX

M_4(2)._{15}D_{14}
% in TeX

G:=Group("M4(2).15D14");
// GroupNames label

G:=SmallGroup(448,737);
// by ID

G=gap.SmallGroup(448,737);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,254,219,184,1123,297,136,1684,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=1,d^2=a^2,b*a*b=a^5,c*a*c^-1=a^3,d*a*d^-1=a^3*b,c*b*c^-1=d*b*d^-1=a^4*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽