extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).1D10 = Dic5.D6 | φ: D10/C5 → C22 ⊆ Aut C2xC6 | 120 | 4 | (C2xC6).1D10 | 240,140 |
(C2xC6).2D10 = C30.C23 | φ: D10/C5 → C22 ⊆ Aut C2xC6 | 120 | 4- | (C2xC6).2D10 | 240,141 |
(C2xC6).3D10 = D4:2D15 | φ: D10/C5 → C22 ⊆ Aut C2xC6 | 120 | 4- | (C2xC6).3D10 | 240,180 |
(C2xC6).4D10 = C3xD4:2D5 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | 4 | (C2xC6).4D10 | 240,160 |
(C2xC6).5D10 = Dic3xDic5 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 240 | | (C2xC6).5D10 | 240,25 |
(C2xC6).6D10 = D10:Dic3 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).6D10 | 240,26 |
(C2xC6).7D10 = D6:Dic5 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).7D10 | 240,27 |
(C2xC6).8D10 = D30:4C4 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).8D10 | 240,28 |
(C2xC6).9D10 = C30.Q8 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 240 | | (C2xC6).9D10 | 240,29 |
(C2xC6).10D10 = Dic15:5C4 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 240 | | (C2xC6).10D10 | 240,30 |
(C2xC6).11D10 = C6.Dic10 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 240 | | (C2xC6).11D10 | 240,31 |
(C2xC6).12D10 = C2xD5xDic3 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).12D10 | 240,139 |
(C2xC6).13D10 = C2xS3xDic5 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).13D10 | 240,142 |
(C2xC6).14D10 = Dic3.D10 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | 4 | (C2xC6).14D10 | 240,143 |
(C2xC6).15D10 = C2xD30.C2 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).15D10 | 240,144 |
(C2xC6).16D10 = C2xC15:D4 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).16D10 | 240,145 |
(C2xC6).17D10 = C2xC3:D20 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).17D10 | 240,146 |
(C2xC6).18D10 = C2xC5:D12 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).18D10 | 240,147 |
(C2xC6).19D10 = C2xC15:Q8 | φ: D10/D5 → C2 ⊆ Aut C2xC6 | 240 | | (C2xC6).19D10 | 240,148 |
(C2xC6).20D10 = C3xC4oD20 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 120 | 2 | (C2xC6).20D10 | 240,158 |
(C2xC6).21D10 = C4xDic15 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 240 | | (C2xC6).21D10 | 240,72 |
(C2xC6).22D10 = C30.4Q8 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 240 | | (C2xC6).22D10 | 240,73 |
(C2xC6).23D10 = C60:5C4 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 240 | | (C2xC6).23D10 | 240,74 |
(C2xC6).24D10 = D30:3C4 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).24D10 | 240,75 |
(C2xC6).25D10 = C30.38D4 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).25D10 | 240,80 |
(C2xC6).26D10 = C2xDic30 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 240 | | (C2xC6).26D10 | 240,175 |
(C2xC6).27D10 = C2xC4xD15 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).27D10 | 240,176 |
(C2xC6).28D10 = C2xD60 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 120 | | (C2xC6).28D10 | 240,177 |
(C2xC6).29D10 = D60:11C2 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 120 | 2 | (C2xC6).29D10 | 240,178 |
(C2xC6).30D10 = C22xDic15 | φ: D10/C10 → C2 ⊆ Aut C2xC6 | 240 | | (C2xC6).30D10 | 240,183 |
(C2xC6).31D10 = C12xDic5 | central extension (φ=1) | 240 | | (C2xC6).31D10 | 240,40 |
(C2xC6).32D10 = C3xC10.D4 | central extension (φ=1) | 240 | | (C2xC6).32D10 | 240,41 |
(C2xC6).33D10 = C3xC4:Dic5 | central extension (φ=1) | 240 | | (C2xC6).33D10 | 240,42 |
(C2xC6).34D10 = C3xD10:C4 | central extension (φ=1) | 120 | | (C2xC6).34D10 | 240,43 |
(C2xC6).35D10 = C3xC23.D5 | central extension (φ=1) | 120 | | (C2xC6).35D10 | 240,48 |
(C2xC6).36D10 = C6xDic10 | central extension (φ=1) | 240 | | (C2xC6).36D10 | 240,155 |
(C2xC6).37D10 = D5xC2xC12 | central extension (φ=1) | 120 | | (C2xC6).37D10 | 240,156 |
(C2xC6).38D10 = C6xD20 | central extension (φ=1) | 120 | | (C2xC6).38D10 | 240,157 |
(C2xC6).39D10 = C2xC6xDic5 | central extension (φ=1) | 240 | | (C2xC6).39D10 | 240,163 |