Copied to
clipboard

G = D8:D7order 224 = 25·7

2nd semidirect product of D8 and D7 acting via D7/C7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8:2D7, C8:2D14, D4:2D14, C56:4C22, D14.6D4, C28.2C23, Dic7.8D4, D28.1C22, Dic14:1C22, D4:D7:2C2, (C7xD8):4C2, (D4xD7):2C2, C7:C8:1C22, C8:D7:3C2, C56:C2:3C2, C7:2(C8:C22), D4.D7:1C2, C2.16(D4xD7), D4:2D7:1C2, C14.28(C2xD4), (C7xD4):2C22, C4.2(C22xD7), (C4xD7).1C22, SmallGroup(224,106)

Series: Derived Chief Lower central Upper central

C1C28 — D8:D7
C1C7C14C28C4xD7D4xD7 — D8:D7
C7C14C28 — D8:D7
C1C2C4D8

Generators and relations for D8:D7
 G = < a,b,c,d | a8=b2=c7=d2=1, bab=a-1, ac=ca, dad=a5, bc=cb, bd=db, dcd=c-1 >

Subgroups: 350 in 68 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C7, C8, C8, C2xC4, D4, D4, Q8, C23, D7, C14, C14, M4(2), D8, D8, SD16, C2xD4, C4oD4, Dic7, Dic7, C28, D14, D14, C2xC14, C8:C22, C7:C8, C56, Dic14, C4xD7, D28, C2xDic7, C7:D4, C7xD4, C22xD7, C8:D7, C56:C2, D4:D7, D4.D7, C7xD8, D4xD7, D4:2D7, D8:D7
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, D14, C8:C22, C22xD7, D4xD7, D8:D7

Smallest permutation representation of D8:D7
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(17 23)(18 22)(19 21)(25 27)(28 32)(29 31)(33 37)(34 36)(38 40)(42 48)(43 47)(44 46)(50 56)(51 55)(52 54)
(1 26 16 53 35 24 41)(2 27 9 54 36 17 42)(3 28 10 55 37 18 43)(4 29 11 56 38 19 44)(5 30 12 49 39 20 45)(6 31 13 50 40 21 46)(7 32 14 51 33 22 47)(8 25 15 52 34 23 48)
(1 41)(2 46)(3 43)(4 48)(5 45)(6 42)(7 47)(8 44)(9 40)(10 37)(11 34)(12 39)(13 36)(14 33)(15 38)(16 35)(17 31)(18 28)(19 25)(20 30)(21 27)(22 32)(23 29)(24 26)(50 54)(52 56)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,23)(18,22)(19,21)(25,27)(28,32)(29,31)(33,37)(34,36)(38,40)(42,48)(43,47)(44,46)(50,56)(51,55)(52,54), (1,26,16,53,35,24,41)(2,27,9,54,36,17,42)(3,28,10,55,37,18,43)(4,29,11,56,38,19,44)(5,30,12,49,39,20,45)(6,31,13,50,40,21,46)(7,32,14,51,33,22,47)(8,25,15,52,34,23,48), (1,41)(2,46)(3,43)(4,48)(5,45)(6,42)(7,47)(8,44)(9,40)(10,37)(11,34)(12,39)(13,36)(14,33)(15,38)(16,35)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26)(50,54)(52,56)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,23)(18,22)(19,21)(25,27)(28,32)(29,31)(33,37)(34,36)(38,40)(42,48)(43,47)(44,46)(50,56)(51,55)(52,54), (1,26,16,53,35,24,41)(2,27,9,54,36,17,42)(3,28,10,55,37,18,43)(4,29,11,56,38,19,44)(5,30,12,49,39,20,45)(6,31,13,50,40,21,46)(7,32,14,51,33,22,47)(8,25,15,52,34,23,48), (1,41)(2,46)(3,43)(4,48)(5,45)(6,42)(7,47)(8,44)(9,40)(10,37)(11,34)(12,39)(13,36)(14,33)(15,38)(16,35)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26)(50,54)(52,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(17,23),(18,22),(19,21),(25,27),(28,32),(29,31),(33,37),(34,36),(38,40),(42,48),(43,47),(44,46),(50,56),(51,55),(52,54)], [(1,26,16,53,35,24,41),(2,27,9,54,36,17,42),(3,28,10,55,37,18,43),(4,29,11,56,38,19,44),(5,30,12,49,39,20,45),(6,31,13,50,40,21,46),(7,32,14,51,33,22,47),(8,25,15,52,34,23,48)], [(1,41),(2,46),(3,43),(4,48),(5,45),(6,42),(7,47),(8,44),(9,40),(10,37),(11,34),(12,39),(13,36),(14,33),(15,38),(16,35),(17,31),(18,28),(19,25),(20,30),(21,27),(22,32),(23,29),(24,26),(50,54),(52,56)]])

D8:D7 is a maximal subgroup of
D8:13D14  D8:10D14  D8:11D14  D7xC8:C22  SD16:D14  D8:5D14  D8:6D14
D8:D7 is a maximal quotient of
D4.D7:C4  D4:Dic14  Dic14:2D4  D4.Dic14  C4:C4.D14  C28:Q8:C2  (D4xD7):C4  D4:(C4xD7)  D4.6D28  D14.SD16  C8:Dic7:C2  C7:C8:1D4  D4:3D28  C7:C8:D4  D4:D7:C4  D28.D4  Dic14:2Q8  C56:4Q8  C56:(C2xC4)  D14.2Q16  C2.D8:D7  C8:3D28  C56:C2:C4  D28.2Q8  Dic7:D8  D8:Dic7  (C2xD8).D7  C56:11D4  D28:D4  Dic14:D4  C56:12D4

32 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B14A14B14C14D···14I28A28B28C56A···56F
order1222224447778814141414···1428282856···56
size11441428214282224282228···84444···4

32 irreducible representations

dim1111111122222444
type+++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D7D14D14C8:C22D4xD7D8:D7
kernelD8:D7C8:D7C56:C2D4:D7D4.D7C7xD8D4xD7D4:2D7Dic7D14D8C8D4C7C2C1
# reps1111111111336136

Matrix representation of D8:D7 in GL4(F113) generated by

004349
00715
178210395
751011810
,
1000
0100
51391120
7400112
,
34100
11110300
0001
0011224
,
10311200
991000
0001
0010
G:=sub<GL(4,GF(113))| [0,0,17,75,0,0,82,101,43,71,103,18,49,5,95,10],[1,0,51,74,0,1,39,0,0,0,112,0,0,0,0,112],[34,111,0,0,1,103,0,0,0,0,0,112,0,0,1,24],[103,99,0,0,112,10,0,0,0,0,0,1,0,0,1,0] >;

D8:D7 in GAP, Magma, Sage, TeX

D_8\rtimes D_7
% in TeX

G:=Group("D8:D7");
// GroupNames label

G:=SmallGroup(224,106);
// by ID

G=gap.SmallGroup(224,106);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,362,116,297,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^7=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<