Direct product G=NxQ with N=Dic5 and Q=D6
Semidirect products G=N:Q with N=Dic5 and Q=D6
Non-split extensions G=N.Q with N=Dic5 and Q=D6
extension | φ:Q→Out N | d | ρ | Label | ID |
Dic5.1D6 = S3xDic10 | φ: D6/S3 → C2 ⊆ Out Dic5 | 120 | 4- | Dic5.1D6 | 240,128 |
Dic5.2D6 = D12:D5 | φ: D6/S3 → C2 ⊆ Out Dic5 | 120 | 4 | Dic5.2D6 | 240,129 |
Dic5.3D6 = D60:C2 | φ: D6/S3 → C2 ⊆ Out Dic5 | 120 | 4+ | Dic5.3D6 | 240,130 |
Dic5.4D6 = D15:Q8 | φ: D6/S3 → C2 ⊆ Out Dic5 | 120 | 4 | Dic5.4D6 | 240,131 |
Dic5.5D6 = Dic5.D6 | φ: D6/S3 → C2 ⊆ Out Dic5 | 120 | 4 | Dic5.5D6 | 240,140 |
Dic5.6D6 = C30.C23 | φ: D6/S3 → C2 ⊆ Out Dic5 | 120 | 4- | Dic5.6D6 | 240,141 |
Dic5.7D6 = S3xC5:C8 | φ: D6/S3 → C2 ⊆ Out Dic5 | 120 | 8- | Dic5.7D6 | 240,98 |
Dic5.8D6 = D15:C8 | φ: D6/S3 → C2 ⊆ Out Dic5 | 120 | 8+ | Dic5.8D6 | 240,99 |
Dic5.9D6 = D6.F5 | φ: D6/S3 → C2 ⊆ Out Dic5 | 120 | 8- | Dic5.9D6 | 240,100 |
Dic5.10D6 = Dic3.F5 | φ: D6/S3 → C2 ⊆ Out Dic5 | 120 | 8+ | Dic5.10D6 | 240,101 |
Dic5.11D6 = D5xDic6 | φ: D6/C6 → C2 ⊆ Out Dic5 | 120 | 4- | Dic5.11D6 | 240,125 |
Dic5.12D6 = D6.D10 | φ: D6/C6 → C2 ⊆ Out Dic5 | 120 | 4 | Dic5.12D6 | 240,132 |
Dic5.13D6 = Dic3.D10 | φ: D6/C6 → C2 ⊆ Out Dic5 | 120 | 4 | Dic5.13D6 | 240,143 |
Dic5.14D6 = C2xC15:Q8 | φ: D6/C6 → C2 ⊆ Out Dic5 | 240 | | Dic5.14D6 | 240,148 |
Dic5.15D6 = C60.C4 | φ: D6/C6 → C2 ⊆ Out Dic5 | 120 | 4 | Dic5.15D6 | 240,118 |
Dic5.16D6 = C12.F5 | φ: D6/C6 → C2 ⊆ Out Dic5 | 120 | 4 | Dic5.16D6 | 240,119 |
Dic5.17D6 = C2xC15:C8 | φ: D6/C6 → C2 ⊆ Out Dic5 | 240 | | Dic5.17D6 | 240,122 |
Dic5.18D6 = C15:8M4(2) | φ: D6/C6 → C2 ⊆ Out Dic5 | 120 | 4 | Dic5.18D6 | 240,123 |
Dic5.19D6 = D12:5D5 | φ: trivial image | 120 | 4- | Dic5.19D6 | 240,133 |
Dic5.20D6 = C12.28D10 | φ: trivial image | 120 | 4+ | Dic5.20D6 | 240,134 |
x
:
Z
F
o
wr
Q
<