extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(S3×D5) = C3⋊D40 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C4 | 120 | 4+ | C4.1(S3xD5) | 240,14 |
C4.2(S3×D5) = C6.D20 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C4 | 120 | 4- | C4.2(S3xD5) | 240,18 |
C4.3(S3×D5) = C15⋊SD16 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C4 | 120 | 4+ | C4.3(S3xD5) | 240,19 |
C4.4(S3×D5) = C3⋊Dic20 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C4 | 240 | 4- | C4.4(S3xD5) | 240,23 |
C4.5(S3×D5) = D20⋊5S3 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C4 | 120 | 4- | C4.5(S3xD5) | 240,126 |
C4.6(S3×D5) = S3×Dic10 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C4 | 120 | 4- | C4.6(S3xD5) | 240,128 |
C4.7(S3×D5) = D60⋊C2 | φ: S3×D5/C5×S3 → C2 ⊆ Aut C4 | 120 | 4+ | C4.7(S3xD5) | 240,130 |
C4.8(S3×D5) = C5⋊D24 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C4 | 120 | 4+ | C4.8(S3xD5) | 240,15 |
C4.9(S3×D5) = D12.D5 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C4 | 120 | 4- | C4.9(S3xD5) | 240,20 |
C4.10(S3×D5) = Dic6⋊D5 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C4 | 120 | 4+ | C4.10(S3xD5) | 240,21 |
C4.11(S3×D5) = C5⋊Dic12 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C4 | 240 | 4- | C4.11(S3xD5) | 240,24 |
C4.12(S3×D5) = D5×Dic6 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C4 | 120 | 4- | C4.12(S3xD5) | 240,125 |
C4.13(S3×D5) = D12⋊5D5 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C4 | 120 | 4- | C4.13(S3xD5) | 240,133 |
C4.14(S3×D5) = C12.28D10 | φ: S3×D5/C3×D5 → C2 ⊆ Aut C4 | 120 | 4+ | C4.14(S3xD5) | 240,134 |
C4.15(S3×D5) = C15⋊D8 | φ: S3×D5/D15 → C2 ⊆ Aut C4 | 120 | 4 | C4.15(S3xD5) | 240,13 |
C4.16(S3×D5) = C30.D4 | φ: S3×D5/D15 → C2 ⊆ Aut C4 | 120 | 4 | C4.16(S3xD5) | 240,16 |
C4.17(S3×D5) = C20.D6 | φ: S3×D5/D15 → C2 ⊆ Aut C4 | 120 | 4 | C4.17(S3xD5) | 240,17 |
C4.18(S3×D5) = C15⋊Q16 | φ: S3×D5/D15 → C2 ⊆ Aut C4 | 240 | 4 | C4.18(S3xD5) | 240,22 |
C4.19(S3×D5) = D20⋊S3 | φ: S3×D5/D15 → C2 ⊆ Aut C4 | 120 | 4 | C4.19(S3xD5) | 240,127 |
C4.20(S3×D5) = D12⋊D5 | φ: S3×D5/D15 → C2 ⊆ Aut C4 | 120 | 4 | C4.20(S3xD5) | 240,129 |
C4.21(S3×D5) = D15⋊Q8 | φ: S3×D5/D15 → C2 ⊆ Aut C4 | 120 | 4 | C4.21(S3xD5) | 240,131 |
C4.22(S3×D5) = D5×C3⋊C8 | central extension (φ=1) | 120 | 4 | C4.22(S3xD5) | 240,7 |
C4.23(S3×D5) = S3×C5⋊2C8 | central extension (φ=1) | 120 | 4 | C4.23(S3xD5) | 240,8 |
C4.24(S3×D5) = D15⋊2C8 | central extension (φ=1) | 120 | 4 | C4.24(S3xD5) | 240,9 |
C4.25(S3×D5) = C20.32D6 | central extension (φ=1) | 120 | 4 | C4.25(S3xD5) | 240,10 |
C4.26(S3×D5) = D6.Dic5 | central extension (φ=1) | 120 | 4 | C4.26(S3xD5) | 240,11 |
C4.27(S3×D5) = D30.5C4 | central extension (φ=1) | 120 | 4 | C4.27(S3xD5) | 240,12 |
C4.28(S3×D5) = D6.D10 | central extension (φ=1) | 120 | 4 | C4.28(S3xD5) | 240,132 |