Copied to
clipboard

G = C41⋊Dic3order 492 = 22·3·41

The semidirect product of C41 and Dic3 acting via Dic3/C3=C4

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C41⋊Dic3, C1231C4, D41.S3, C3⋊(C41⋊C4), (C3×D41).1C2, SmallGroup(492,6)

Series: Derived Chief Lower central Upper central

C1C123 — C41⋊Dic3
C1C41C123C3×D41 — C41⋊Dic3
C123 — C41⋊Dic3
C1

Generators and relations for C41⋊Dic3
 G = < a,b,c | a41=b6=1, c2=b3, bab-1=a-1, cac-1=a32, cbc-1=b-1 >

41C2
123C4
41C6
41Dic3
3C41⋊C4

Smallest permutation representation of C41⋊Dic3
On 123 points
Generators in S123
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)(42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82)(83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123)
(1 97 42)(2 96 43 41 98 82)(3 95 44 40 99 81)(4 94 45 39 100 80)(5 93 46 38 101 79)(6 92 47 37 102 78)(7 91 48 36 103 77)(8 90 49 35 104 76)(9 89 50 34 105 75)(10 88 51 33 106 74)(11 87 52 32 107 73)(12 86 53 31 108 72)(13 85 54 30 109 71)(14 84 55 29 110 70)(15 83 56 28 111 69)(16 123 57 27 112 68)(17 122 58 26 113 67)(18 121 59 25 114 66)(19 120 60 24 115 65)(20 119 61 23 116 64)(21 118 62 22 117 63)
(2 10 41 33)(3 19 40 24)(4 28 39 15)(5 37 38 6)(7 14 36 29)(8 23 35 20)(9 32 34 11)(12 18 31 25)(13 27 30 16)(17 22 26 21)(42 97)(43 106 82 88)(44 115 81 120)(45 83 80 111)(46 92 79 102)(47 101 78 93)(48 110 77 84)(49 119 76 116)(50 87 75 107)(51 96 74 98)(52 105 73 89)(53 114 72 121)(54 123 71 112)(55 91 70 103)(56 100 69 94)(57 109 68 85)(58 118 67 117)(59 86 66 108)(60 95 65 99)(61 104 64 90)(62 113 63 122)

G:=sub<Sym(123)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123), (1,97,42)(2,96,43,41,98,82)(3,95,44,40,99,81)(4,94,45,39,100,80)(5,93,46,38,101,79)(6,92,47,37,102,78)(7,91,48,36,103,77)(8,90,49,35,104,76)(9,89,50,34,105,75)(10,88,51,33,106,74)(11,87,52,32,107,73)(12,86,53,31,108,72)(13,85,54,30,109,71)(14,84,55,29,110,70)(15,83,56,28,111,69)(16,123,57,27,112,68)(17,122,58,26,113,67)(18,121,59,25,114,66)(19,120,60,24,115,65)(20,119,61,23,116,64)(21,118,62,22,117,63), (2,10,41,33)(3,19,40,24)(4,28,39,15)(5,37,38,6)(7,14,36,29)(8,23,35,20)(9,32,34,11)(12,18,31,25)(13,27,30,16)(17,22,26,21)(42,97)(43,106,82,88)(44,115,81,120)(45,83,80,111)(46,92,79,102)(47,101,78,93)(48,110,77,84)(49,119,76,116)(50,87,75,107)(51,96,74,98)(52,105,73,89)(53,114,72,121)(54,123,71,112)(55,91,70,103)(56,100,69,94)(57,109,68,85)(58,118,67,117)(59,86,66,108)(60,95,65,99)(61,104,64,90)(62,113,63,122)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123), (1,97,42)(2,96,43,41,98,82)(3,95,44,40,99,81)(4,94,45,39,100,80)(5,93,46,38,101,79)(6,92,47,37,102,78)(7,91,48,36,103,77)(8,90,49,35,104,76)(9,89,50,34,105,75)(10,88,51,33,106,74)(11,87,52,32,107,73)(12,86,53,31,108,72)(13,85,54,30,109,71)(14,84,55,29,110,70)(15,83,56,28,111,69)(16,123,57,27,112,68)(17,122,58,26,113,67)(18,121,59,25,114,66)(19,120,60,24,115,65)(20,119,61,23,116,64)(21,118,62,22,117,63), (2,10,41,33)(3,19,40,24)(4,28,39,15)(5,37,38,6)(7,14,36,29)(8,23,35,20)(9,32,34,11)(12,18,31,25)(13,27,30,16)(17,22,26,21)(42,97)(43,106,82,88)(44,115,81,120)(45,83,80,111)(46,92,79,102)(47,101,78,93)(48,110,77,84)(49,119,76,116)(50,87,75,107)(51,96,74,98)(52,105,73,89)(53,114,72,121)(54,123,71,112)(55,91,70,103)(56,100,69,94)(57,109,68,85)(58,118,67,117)(59,86,66,108)(60,95,65,99)(61,104,64,90)(62,113,63,122) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41),(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82),(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123)], [(1,97,42),(2,96,43,41,98,82),(3,95,44,40,99,81),(4,94,45,39,100,80),(5,93,46,38,101,79),(6,92,47,37,102,78),(7,91,48,36,103,77),(8,90,49,35,104,76),(9,89,50,34,105,75),(10,88,51,33,106,74),(11,87,52,32,107,73),(12,86,53,31,108,72),(13,85,54,30,109,71),(14,84,55,29,110,70),(15,83,56,28,111,69),(16,123,57,27,112,68),(17,122,58,26,113,67),(18,121,59,25,114,66),(19,120,60,24,115,65),(20,119,61,23,116,64),(21,118,62,22,117,63)], [(2,10,41,33),(3,19,40,24),(4,28,39,15),(5,37,38,6),(7,14,36,29),(8,23,35,20),(9,32,34,11),(12,18,31,25),(13,27,30,16),(17,22,26,21),(42,97),(43,106,82,88),(44,115,81,120),(45,83,80,111),(46,92,79,102),(47,101,78,93),(48,110,77,84),(49,119,76,116),(50,87,75,107),(51,96,74,98),(52,105,73,89),(53,114,72,121),(54,123,71,112),(55,91,70,103),(56,100,69,94),(57,109,68,85),(58,118,67,117),(59,86,66,108),(60,95,65,99),(61,104,64,90),(62,113,63,122)]])

36 conjugacy classes

class 1  2  3 4A4B 6 41A···41J123A···123T
order12344641···41123···123
size1412123123824···44···4

36 irreducible representations

dim1112244
type+++-+
imageC1C2C4S3Dic3C41⋊C4C41⋊Dic3
kernelC41⋊Dic3C3×D41C123D41C41C3C1
# reps112111020

Matrix representation of C41⋊Dic3 in GL4(𝔽2953) generated by

0100
0010
0001
295226445542644
,
971112619431392
2293243125591982
26141382165660
15343982056339
,
1000
8482292341268
10387802532614
193917972739191
G:=sub<GL(4,GF(2953))| [0,0,0,2952,1,0,0,2644,0,1,0,554,0,0,1,2644],[971,2293,2614,1534,1126,2431,138,398,1943,2559,2165,2056,1392,1982,660,339],[1,848,1038,1939,0,229,780,1797,0,234,2532,2739,0,1268,614,191] >;

C41⋊Dic3 in GAP, Magma, Sage, TeX

C_{41}\rtimes {\rm Dic}_3
% in TeX

G:=Group("C41:Dic3");
// GroupNames label

G:=SmallGroup(492,6);
// by ID

G=gap.SmallGroup(492,6);
# by ID

G:=PCGroup([4,-2,-2,-3,-41,8,98,1731,3847]);
// Polycyclic

G:=Group<a,b,c|a^41=b^6=1,c^2=b^3,b*a*b^-1=a^-1,c*a*c^-1=a^32,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C41⋊Dic3 in TeX

׿
×
𝔽