metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D140, C4⋊D35, C35⋊4D4, C7⋊1D20, C5⋊1D28, C28⋊1D5, C20⋊1D7, C140⋊1C2, D70⋊1C2, C2.4D70, C10.10D14, C14.10D10, C70.10C22, sometimes denoted D280 or Dih140 or Dih280, SmallGroup(280,26)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D140
G = < a,b | a140=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 140)(2 139)(3 138)(4 137)(5 136)(6 135)(7 134)(8 133)(9 132)(10 131)(11 130)(12 129)(13 128)(14 127)(15 126)(16 125)(17 124)(18 123)(19 122)(20 121)(21 120)(22 119)(23 118)(24 117)(25 116)(26 115)(27 114)(28 113)(29 112)(30 111)(31 110)(32 109)(33 108)(34 107)(35 106)(36 105)(37 104)(38 103)(39 102)(40 101)(41 100)(42 99)(43 98)(44 97)(45 96)(46 95)(47 94)(48 93)(49 92)(50 91)(51 90)(52 89)(53 88)(54 87)(55 86)(56 85)(57 84)(58 83)(59 82)(60 81)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 72)(70 71)
G:=sub<Sym(140)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,140)(2,139)(3,138)(4,137)(5,136)(6,135)(7,134)(8,133)(9,132)(10,131)(11,130)(12,129)(13,128)(14,127)(15,126)(16,125)(17,124)(18,123)(19,122)(20,121)(21,120)(22,119)(23,118)(24,117)(25,116)(26,115)(27,114)(28,113)(29,112)(30,111)(31,110)(32,109)(33,108)(34,107)(35,106)(36,105)(37,104)(38,103)(39,102)(40,101)(41,100)(42,99)(43,98)(44,97)(45,96)(46,95)(47,94)(48,93)(49,92)(50,91)(51,90)(52,89)(53,88)(54,87)(55,86)(56,85)(57,84)(58,83)(59,82)(60,81)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,140)(2,139)(3,138)(4,137)(5,136)(6,135)(7,134)(8,133)(9,132)(10,131)(11,130)(12,129)(13,128)(14,127)(15,126)(16,125)(17,124)(18,123)(19,122)(20,121)(21,120)(22,119)(23,118)(24,117)(25,116)(26,115)(27,114)(28,113)(29,112)(30,111)(31,110)(32,109)(33,108)(34,107)(35,106)(36,105)(37,104)(38,103)(39,102)(40,101)(41,100)(42,99)(43,98)(44,97)(45,96)(46,95)(47,94)(48,93)(49,92)(50,91)(51,90)(52,89)(53,88)(54,87)(55,86)(56,85)(57,84)(58,83)(59,82)(60,81)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,140),(2,139),(3,138),(4,137),(5,136),(6,135),(7,134),(8,133),(9,132),(10,131),(11,130),(12,129),(13,128),(14,127),(15,126),(16,125),(17,124),(18,123),(19,122),(20,121),(21,120),(22,119),(23,118),(24,117),(25,116),(26,115),(27,114),(28,113),(29,112),(30,111),(31,110),(32,109),(33,108),(34,107),(35,106),(36,105),(37,104),(38,103),(39,102),(40,101),(41,100),(42,99),(43,98),(44,97),(45,96),(46,95),(47,94),(48,93),(49,92),(50,91),(51,90),(52,89),(53,88),(54,87),(55,86),(56,85),(57,84),(58,83),(59,82),(60,81),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,72),(70,71)]])
73 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 5A | 5B | 7A | 7B | 7C | 10A | 10B | 14A | 14B | 14C | 20A | 20B | 20C | 20D | 28A | ··· | 28F | 35A | ··· | 35L | 70A | ··· | 70L | 140A | ··· | 140X |
order | 1 | 2 | 2 | 2 | 4 | 5 | 5 | 7 | 7 | 7 | 10 | 10 | 14 | 14 | 14 | 20 | 20 | 20 | 20 | 28 | ··· | 28 | 35 | ··· | 35 | 70 | ··· | 70 | 140 | ··· | 140 |
size | 1 | 1 | 70 | 70 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
73 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | D4 | D5 | D7 | D10 | D14 | D20 | D28 | D35 | D70 | D140 |
kernel | D140 | C140 | D70 | C35 | C28 | C20 | C14 | C10 | C7 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 3 | 4 | 6 | 12 | 12 | 24 |
Matrix representation of D140 ►in GL2(𝔽281) generated by
245 | 111 |
170 | 30 |
245 | 111 |
82 | 36 |
G:=sub<GL(2,GF(281))| [245,170,111,30],[245,82,111,36] >;
D140 in GAP, Magma, Sage, TeX
D_{140}
% in TeX
G:=Group("D140");
// GroupNames label
G:=SmallGroup(280,26);
// by ID
G=gap.SmallGroup(280,26);
# by ID
G:=PCGroup([5,-2,-2,-2,-5,-7,61,26,643,6004]);
// Polycyclic
G:=Group<a,b|a^140=b^2=1,b*a*b=a^-1>;
// generators/relations
Export