extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6)⋊D12 = Dic3⋊S4 | φ: D12/C2 → D6 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6):D12 | 288,855 |
(C2×C6)⋊2D12 = C3×C4⋊S4 | φ: D12/C4 → S3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6):2D12 | 288,898 |
(C2×C6)⋊3D12 = C12⋊S4 | φ: D12/C4 → S3 ⊆ Aut C2×C6 | 36 | 6+ | (C2xC6):3D12 | 288,909 |
(C2×C6)⋊4D12 = C62⋊6D4 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6):4D12 | 288,626 |
(C2×C6)⋊5D12 = C62⋊8D4 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 24 | | (C2xC6):5D12 | 288,629 |
(C2×C6)⋊6D12 = C62⋊12D4 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6):6D12 | 288,739 |
(C2×C6)⋊7D12 = C3×C12⋊7D4 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):7D12 | 288,701 |
(C2×C6)⋊8D12 = C62⋊19D4 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6):8D12 | 288,787 |
(C2×C6)⋊9D12 = C22×C12⋊S3 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6):9D12 | 288,1005 |
(C2×C6)⋊10D12 = C3×D6⋊D4 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):10D12 | 288,653 |
(C2×C6)⋊11D12 = C62⋊5D4 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):11D12 | 288,625 |
(C2×C6)⋊12D12 = C22×C3⋊D12 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):12D12 | 288,974 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).D12 = C22⋊D36 | φ: D12/C4 → S3 ⊆ Aut C2×C6 | 36 | 6+ | (C2xC6).D12 | 288,334 |
(C2×C6).2D12 = C22.D36 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).2D12 | 288,13 |
(C2×C6).3D12 = Dic18⋊C4 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).3D12 | 288,32 |
(C2×C6).4D12 = C22⋊3D36 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).4D12 | 288,92 |
(C2×C6).5D12 = C22.4D36 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).5D12 | 288,96 |
(C2×C6).6D12 = C8⋊D18 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 72 | 4+ | (C2xC6).6D12 | 288,118 |
(C2×C6).7D12 = C8.D18 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 144 | 4- | (C2xC6).7D12 | 288,119 |
(C2×C6).8D12 = D12⋊4Dic3 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).8D12 | 288,216 |
(C2×C6).9D12 = C62.31D4 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).9D12 | 288,228 |
(C2×C6).10D12 = C62.110D4 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).10D12 | 288,281 |
(C2×C6).11D12 = C62.37D4 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).11D12 | 288,300 |
(C2×C6).12D12 = D12⋊18D6 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 24 | 4+ | (C2xC6).12D12 | 288,473 |
(C2×C6).13D12 = D12.27D6 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).13D12 | 288,477 |
(C2×C6).14D12 = D12.29D6 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 48 | 4- | (C2xC6).14D12 | 288,479 |
(C2×C6).15D12 = C62.57D4 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).15D12 | 288,610 |
(C2×C6).16D12 = C62.69D4 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).16D12 | 288,743 |
(C2×C6).17D12 = C24⋊3D6 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).17D12 | 288,765 |
(C2×C6).18D12 = C24.5D6 | φ: D12/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).18D12 | 288,766 |
(C2×C6).19D12 = C3×C4○D24 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 48 | 2 | (C2xC6).19D12 | 288,675 |
(C2×C6).20D12 = C36.45D4 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).20D12 | 288,24 |
(C2×C6).21D12 = C8⋊Dic9 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).21D12 | 288,25 |
(C2×C6).22D12 = C72⋊1C4 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).22D12 | 288,26 |
(C2×C6).23D12 = C2.D72 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).23D12 | 288,28 |
(C2×C6).24D12 = C18.C42 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).24D12 | 288,38 |
(C2×C6).25D12 = C2×Dic36 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).25D12 | 288,109 |
(C2×C6).26D12 = C2×C72⋊C2 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).26D12 | 288,113 |
(C2×C6).27D12 = C2×D72 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).27D12 | 288,114 |
(C2×C6).28D12 = D72⋊7C2 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | 2 | (C2xC6).28D12 | 288,115 |
(C2×C6).29D12 = C2×C4⋊Dic9 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).29D12 | 288,135 |
(C2×C6).30D12 = C2×D18⋊C4 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).30D12 | 288,137 |
(C2×C6).31D12 = C36⋊7D4 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).31D12 | 288,140 |
(C2×C6).32D12 = C6.4Dic12 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).32D12 | 288,291 |
(C2×C6).33D12 = C24⋊2Dic3 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).33D12 | 288,292 |
(C2×C6).34D12 = C24⋊1Dic3 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).34D12 | 288,293 |
(C2×C6).35D12 = C62.84D4 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).35D12 | 288,296 |
(C2×C6).36D12 = C62.15Q8 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).36D12 | 288,306 |
(C2×C6).37D12 = C22×D36 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).37D12 | 288,354 |
(C2×C6).38D12 = C2×C24⋊2S3 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).38D12 | 288,759 |
(C2×C6).39D12 = C2×C32⋊5D8 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).39D12 | 288,760 |
(C2×C6).40D12 = C24.78D6 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).40D12 | 288,761 |
(C2×C6).41D12 = C2×C32⋊5Q16 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).41D12 | 288,762 |
(C2×C6).42D12 = C2×C12⋊Dic3 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).42D12 | 288,782 |
(C2×C6).43D12 = C2×C6.11D12 | φ: D12/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).43D12 | 288,784 |
(C2×C6).44D12 = C3×C23.6D6 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).44D12 | 288,240 |
(C2×C6).45D12 = C3×D12⋊C4 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).45D12 | 288,259 |
(C2×C6).46D12 = C3×C23.21D6 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).46D12 | 288,657 |
(C2×C6).47D12 = C3×C8⋊D6 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).47D12 | 288,679 |
(C2×C6).48D12 = C3×C8.D6 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).48D12 | 288,680 |
(C2×C6).49D12 = C6.16D24 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).49D12 | 288,211 |
(C2×C6).50D12 = C6.17D24 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).50D12 | 288,212 |
(C2×C6).51D12 = C6.Dic12 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).51D12 | 288,214 |
(C2×C6).52D12 = C12.73D12 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).52D12 | 288,215 |
(C2×C6).53D12 = C12.80D12 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).53D12 | 288,218 |
(C2×C6).54D12 = C12.Dic6 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).54D12 | 288,221 |
(C2×C6).55D12 = C6.18D24 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).55D12 | 288,223 |
(C2×C6).56D12 = C62.6Q8 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).56D12 | 288,227 |
(C2×C6).57D12 = C62.32D4 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).57D12 | 288,229 |
(C2×C6).58D12 = C2×C3⋊D24 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).58D12 | 288,472 |
(C2×C6).59D12 = C2×D12.S3 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).59D12 | 288,476 |
(C2×C6).60D12 = D12.28D6 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).60D12 | 288,478 |
(C2×C6).61D12 = C2×C32⋊5SD16 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).61D12 | 288,480 |
(C2×C6).62D12 = Dic6.29D6 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).62D12 | 288,481 |
(C2×C6).63D12 = C2×C32⋊3Q16 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).63D12 | 288,483 |
(C2×C6).64D12 = C2×D6⋊Dic3 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).64D12 | 288,608 |
(C2×C6).65D12 = C2×C6.D12 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).65D12 | 288,611 |
(C2×C6).66D12 = C2×Dic3⋊Dic3 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).66D12 | 288,613 |
(C2×C6).67D12 = C62.60D4 | φ: D12/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).67D12 | 288,614 |
(C2×C6).68D12 = C3×C2.Dic12 | central extension (φ=1) | 96 | | (C2xC6).68D12 | 288,250 |
(C2×C6).69D12 = C3×C8⋊Dic3 | central extension (φ=1) | 96 | | (C2xC6).69D12 | 288,251 |
(C2×C6).70D12 = C3×C24⋊1C4 | central extension (φ=1) | 96 | | (C2xC6).70D12 | 288,252 |
(C2×C6).71D12 = C3×C2.D24 | central extension (φ=1) | 96 | | (C2xC6).71D12 | 288,255 |
(C2×C6).72D12 = C3×C6.C42 | central extension (φ=1) | 96 | | (C2xC6).72D12 | 288,265 |
(C2×C6).73D12 = C6×C24⋊C2 | central extension (φ=1) | 96 | | (C2xC6).73D12 | 288,673 |
(C2×C6).74D12 = C6×D24 | central extension (φ=1) | 96 | | (C2xC6).74D12 | 288,674 |
(C2×C6).75D12 = C6×Dic12 | central extension (φ=1) | 96 | | (C2xC6).75D12 | 288,676 |
(C2×C6).76D12 = C6×C4⋊Dic3 | central extension (φ=1) | 96 | | (C2xC6).76D12 | 288,696 |
(C2×C6).77D12 = C6×D6⋊C4 | central extension (φ=1) | 96 | | (C2xC6).77D12 | 288,698 |