direct product, metabelian, supersoluble, monomial
Aliases: C2×C6.D12, C62.58D4, C62.105C23, C6⋊1(D6⋊C4), C23.41S32, C6.83(C2×D12), (C2×C6).65D12, (C2×Dic3)⋊18D6, C62.55(C2×C4), (C22×Dic3)⋊7S3, (C22×C6).114D6, (C6×Dic3)⋊22C22, (C2×C62).24C22, C22.24(C3⋊D12), C22.15(C6.D6), C3⋊2(C2×D6⋊C4), C6.37(S3×C2×C4), (Dic3×C2×C6)⋊3C2, (C22×C3⋊S3)⋊4C4, (C2×C6).31(C4×S3), C22.51(C2×S32), C6.20(C2×C3⋊D4), C32⋊6(C2×C22⋊C4), (C3×C6)⋊4(C22⋊C4), C2.3(C2×C3⋊D12), (C3×C6).151(C2×D4), (C23×C3⋊S3).1C2, (C2×C6).41(C3⋊D4), (C3×C6).65(C22×C4), C2.14(C2×C6.D6), (C2×C6).124(C22×S3), (C22×C3⋊S3).76C22, (C2×C3⋊S3)⋊14(C2×C4), SmallGroup(288,611)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C6.D12
G = < a,b,c,d | a2=b6=c12=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=b3c-1 >
Subgroups: 1474 in 331 conjugacy classes, 92 normal (10 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C23, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C22×C4, C24, C3⋊S3, C3×C6, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C22×S3, C22×C6, C22×C6, C2×C22⋊C4, C3×Dic3, C2×C3⋊S3, C2×C3⋊S3, C62, C62, D6⋊C4, C22×Dic3, C22×C12, S3×C23, C6×Dic3, C6×Dic3, C22×C3⋊S3, C22×C3⋊S3, C2×C62, C2×D6⋊C4, C6.D12, Dic3×C2×C6, C23×C3⋊S3, C2×C6.D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, C22×C4, C2×D4, C4×S3, D12, C3⋊D4, C22×S3, C2×C22⋊C4, S32, D6⋊C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C6.D6, C3⋊D12, C2×S32, C2×D6⋊C4, C6.D12, C2×C6.D6, C2×C3⋊D12, C2×C6.D12
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 25)(10 26)(11 27)(12 28)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 37)(21 38)(22 39)(23 40)(24 41)
(1 14 9 22 5 18)(2 19 6 23 10 15)(3 16 11 24 7 20)(4 21 8 13 12 17)(25 39 33 47 29 43)(26 44 30 48 34 40)(27 41 35 37 31 45)(28 46 32 38 36 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 31)(2 40)(3 29)(4 38)(5 27)(6 48)(7 25)(8 46)(9 35)(10 44)(11 33)(12 42)(13 28)(14 37)(15 26)(16 47)(17 36)(18 45)(19 34)(20 43)(21 32)(22 41)(23 30)(24 39)
G:=sub<Sym(48)| (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,14,9,22,5,18)(2,19,6,23,10,15)(3,16,11,24,7,20)(4,21,8,13,12,17)(25,39,33,47,29,43)(26,44,30,48,34,40)(27,41,35,37,31,45)(28,46,32,38,36,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,31)(2,40)(3,29)(4,38)(5,27)(6,48)(7,25)(8,46)(9,35)(10,44)(11,33)(12,42)(13,28)(14,37)(15,26)(16,47)(17,36)(18,45)(19,34)(20,43)(21,32)(22,41)(23,30)(24,39)>;
G:=Group( (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,14,9,22,5,18)(2,19,6,23,10,15)(3,16,11,24,7,20)(4,21,8,13,12,17)(25,39,33,47,29,43)(26,44,30,48,34,40)(27,41,35,37,31,45)(28,46,32,38,36,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,31)(2,40)(3,29)(4,38)(5,27)(6,48)(7,25)(8,46)(9,35)(10,44)(11,33)(12,42)(13,28)(14,37)(15,26)(16,47)(17,36)(18,45)(19,34)(20,43)(21,32)(22,41)(23,30)(24,39) );
G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,25),(10,26),(11,27),(12,28),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,37),(21,38),(22,39),(23,40),(24,41)], [(1,14,9,22,5,18),(2,19,6,23,10,15),(3,16,11,24,7,20),(4,21,8,13,12,17),(25,39,33,47,29,43),(26,44,30,48,34,40),(27,41,35,37,31,45),(28,46,32,38,36,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,31),(2,40),(3,29),(4,38),(5,27),(6,48),(7,25),(8,46),(9,35),(10,44),(11,33),(12,42),(13,28),(14,37),(15,26),(16,47),(17,36),(18,45),(19,34),(20,43),(21,32),(22,41),(23,30),(24,39)]])
60 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 3A | 3B | 3C | 4A | ··· | 4H | 6A | ··· | 6N | 6O | ··· | 6U | 12A | ··· | 12P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 18 | 18 | 18 | 18 | 2 | 2 | 4 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C4 | S3 | D4 | D6 | D6 | C4×S3 | D12 | C3⋊D4 | S32 | C6.D6 | C3⋊D12 | C2×S32 |
kernel | C2×C6.D12 | C6.D12 | Dic3×C2×C6 | C23×C3⋊S3 | C22×C3⋊S3 | C22×Dic3 | C62 | C2×Dic3 | C22×C6 | C2×C6 | C2×C6 | C2×C6 | C23 | C22 | C22 | C22 |
# reps | 1 | 4 | 2 | 1 | 8 | 2 | 4 | 4 | 2 | 8 | 8 | 8 | 1 | 2 | 4 | 1 |
Matrix representation of C2×C6.D12 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
0 | 0 | 0 | 0 | 8 | 5 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 12 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,12,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,8,0,0,0,0,5,5],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,12] >;
C2×C6.D12 in GAP, Magma, Sage, TeX
C_2\times C_6.D_{12}
% in TeX
G:=Group("C2xC6.D12");
// GroupNames label
G:=SmallGroup(288,611);
// by ID
G=gap.SmallGroup(288,611);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,253,176,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^6=c^12=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=b^3*c^-1>;
// generators/relations