extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C6)⋊1D4 = C62.55C23 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 96 | | (S3xC6):1D4 | 288,533 |
(S3×C6)⋊2D4 = Dic3⋊D12 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | | (S3xC6):2D4 | 288,534 |
(S3×C6)⋊3D4 = D6⋊4D12 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | | (S3xC6):3D4 | 288,570 |
(S3×C6)⋊4D4 = D6⋊5D12 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | | (S3xC6):4D4 | 288,571 |
(S3×C6)⋊5D4 = C62.112C23 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | | (S3xC6):5D4 | 288,618 |
(S3×C6)⋊6D4 = C62.113C23 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | | (S3xC6):6D4 | 288,619 |
(S3×C6)⋊7D4 = C62.125C23 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | | (S3xC6):7D4 | 288,631 |
(S3×C6)⋊8D4 = D6⋊D12 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):8D4 | 288,554 |
(S3×C6)⋊9D4 = D6⋊2D12 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 96 | | (S3xC6):9D4 | 288,556 |
(S3×C6)⋊10D4 = C12⋊7D12 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):10D4 | 288,557 |
(S3×C6)⋊11D4 = C3×Dic3⋊D4 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):11D4 | 288,655 |
(S3×C6)⋊12D4 = C3×C12⋊D4 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 96 | | (S3xC6):12D4 | 288,666 |
(S3×C6)⋊13D4 = C3×D6⋊3D4 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):13D4 | 288,709 |
(S3×C6)⋊14D4 = C2×S3×D12 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):14D4 | 288,951 |
(S3×C6)⋊15D4 = C62⋊4D4 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):15D4 | 288,624 |
(S3×C6)⋊16D4 = C62⋊5D4 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):16D4 | 288,625 |
(S3×C6)⋊17D4 = C3×D6⋊D4 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):17D4 | 288,653 |
(S3×C6)⋊18D4 = C3×C23⋊2D6 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):18D4 | 288,708 |
(S3×C6)⋊19D4 = C2×S3×C3⋊D4 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):19D4 | 288,976 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C6).1D4 = C24⋊1D6 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | 4+ | (S3xC6).1D4 | 288,442 |
(S3×C6).2D4 = D24⋊S3 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).2D4 | 288,443 |
(S3×C6).3D4 = C24.3D6 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 96 | 4- | (S3xC6).3D4 | 288,448 |
(S3×C6).4D4 = Dic12⋊S3 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).4D4 | 288,449 |
(S3×C6).5D4 = C62.54C23 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 96 | | (S3xC6).5D4 | 288,532 |
(S3×C6).6D4 = D6.D12 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | | (S3xC6).6D4 | 288,538 |
(S3×C6).7D4 = D6.9D12 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 96 | | (S3xC6).7D4 | 288,539 |
(S3×C6).8D4 = Dic6⋊3D6 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | 8+ | (S3xC6).8D4 | 288,573 |
(S3×C6).9D4 = Dic6.19D6 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | 8- | (S3xC6).9D4 | 288,577 |
(S3×C6).10D4 = D12.22D6 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | 8- | (S3xC6).10D4 | 288,581 |
(S3×C6).11D4 = Dic6.20D6 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | 8+ | (S3xC6).11D4 | 288,583 |
(S3×C6).12D4 = D12⋊6D6 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | 8+ | (S3xC6).12D4 | 288,587 |
(S3×C6).13D4 = D12.11D6 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 96 | 8- | (S3xC6).13D4 | 288,591 |
(S3×C6).14D4 = D12.12D6 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 96 | 8- | (S3xC6).14D4 | 288,595 |
(S3×C6).15D4 = D12.13D6 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | 8+ | (S3xC6).15D4 | 288,597 |
(S3×C6).16D4 = C62.111C23 | φ: D4/C2 → C22 ⊆ Out S3×C6 | 48 | | (S3xC6).16D4 | 288,617 |
(S3×C6).17D4 = S3×C24⋊C2 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).17D4 | 288,440 |
(S3×C6).18D4 = S3×D24 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | 4+ | (S3xC6).18D4 | 288,441 |
(S3×C6).19D4 = S3×Dic12 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 96 | 4- | (S3xC6).19D4 | 288,447 |
(S3×C6).20D4 = D6.1D12 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).20D4 | 288,454 |
(S3×C6).21D4 = D24⋊7S3 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 96 | 4- | (S3xC6).21D4 | 288,455 |
(S3×C6).22D4 = D6.3D12 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | 4+ | (S3xC6).22D4 | 288,456 |
(S3×C6).23D4 = S3×C4⋊Dic3 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 96 | | (S3xC6).23D4 | 288,537 |
(S3×C6).24D4 = S3×D6⋊C4 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6).24D4 | 288,568 |
(S3×C6).25D4 = C3×D8⋊3S3 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).25D4 | 288,683 |
(S3×C6).26D4 = C3×Q8.7D6 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).26D4 | 288,687 |
(S3×C6).27D4 = C3×D24⋊C2 | φ: D4/C4 → C2 ⊆ Out S3×C6 | 96 | 4 | (S3xC6).27D4 | 288,690 |
(S3×C6).28D4 = C62.20C23 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6).28D4 | 288,498 |
(S3×C6).29D4 = S3×Dic3⋊C4 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 96 | | (S3xC6).29D4 | 288,524 |
(S3×C6).30D4 = C62.75C23 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 96 | | (S3xC6).30D4 | 288,553 |
(S3×C6).31D4 = S3×D4⋊S3 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | 8+ | (S3xC6).31D4 | 288,572 |
(S3×C6).32D4 = S3×D4.S3 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | 8- | (S3xC6).32D4 | 288,576 |
(S3×C6).33D4 = D12⋊9D6 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | 8- | (S3xC6).33D4 | 288,580 |
(S3×C6).34D4 = D12.7D6 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | 8+ | (S3xC6).34D4 | 288,582 |
(S3×C6).35D4 = S3×Q8⋊2S3 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | 8+ | (S3xC6).35D4 | 288,586 |
(S3×C6).36D4 = S3×C3⋊Q16 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 96 | 8- | (S3xC6).36D4 | 288,590 |
(S3×C6).37D4 = D12.24D6 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 96 | 8- | (S3xC6).37D4 | 288,594 |
(S3×C6).38D4 = Dic6.22D6 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | 8+ | (S3xC6).38D4 | 288,596 |
(S3×C6).39D4 = S3×C6.D4 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6).39D4 | 288,616 |
(S3×C6).40D4 = C3×C23.9D6 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6).40D4 | 288,654 |
(S3×C6).41D4 = C3×D6.D4 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 96 | | (S3xC6).41D4 | 288,665 |
(S3×C6).42D4 = C3×D8⋊S3 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).42D4 | 288,682 |
(S3×C6).43D4 = C3×Q8⋊3D6 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).43D4 | 288,685 |
(S3×C6).44D4 = C3×D4.D6 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).44D4 | 288,686 |
(S3×C6).45D4 = C3×Q16⋊S3 | φ: D4/C22 → C2 ⊆ Out S3×C6 | 96 | 4 | (S3xC6).45D4 | 288,689 |
(S3×C6).46D4 = C3×S3×C22⋊C4 | φ: trivial image | 48 | | (S3xC6).46D4 | 288,651 |
(S3×C6).47D4 = C3×S3×C4⋊C4 | φ: trivial image | 96 | | (S3xC6).47D4 | 288,662 |
(S3×C6).48D4 = C3×S3×D8 | φ: trivial image | 48 | 4 | (S3xC6).48D4 | 288,681 |
(S3×C6).49D4 = C3×S3×SD16 | φ: trivial image | 48 | 4 | (S3xC6).49D4 | 288,684 |
(S3×C6).50D4 = C3×S3×Q16 | φ: trivial image | 96 | 4 | (S3xC6).50D4 | 288,688 |