Copied to
clipboard

G = C2×C39⋊C4order 312 = 23·3·13

Direct product of C2 and C39⋊C4

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C39⋊C4, C781C4, D26.S3, C26⋊Dic3, D13⋊Dic3, D13.2D6, C6⋊(C13⋊C4), C392(C2×C4), C13⋊(C2×Dic3), (C3×D13)⋊2C4, (C6×D13).2C2, (C3×D13).2C22, C32(C2×C13⋊C4), SmallGroup(312,53)

Series: Derived Chief Lower central Upper central

C1C39 — C2×C39⋊C4
C1C13C39C3×D13C39⋊C4 — C2×C39⋊C4
C39 — C2×C39⋊C4
C1C2

Generators and relations for C2×C39⋊C4
 G = < a,b,c | a2=b39=c4=1, ab=ba, ac=ca, cbc-1=b8 >

13C2
13C2
13C22
39C4
39C4
13C6
13C6
39C2×C4
13Dic3
13Dic3
13C2×C6
3C13⋊C4
3C13⋊C4
13C2×Dic3
3C2×C13⋊C4

Character table of C2×C39⋊C4

 class 12A2B2C34A4B4C4D6A6B6C13A13B13C26A26B26C39A39B39C39D39E39F78A78B78C78D78E78F
 size 11131323939393922626444444444444444444
ρ1111111111111111111111111111111    trivial
ρ21-11-11-11-11-11-1111-1-1-1111111-1-1-1-1-1-1    linear of order 2
ρ31-11-111-11-1-11-1111-1-1-1111111-1-1-1-1-1-1    linear of order 2
ρ411111-1-1-1-1111111111111111111111    linear of order 2
ρ51-1-111-iii-i-1-11111-1-1-1111111-1-1-1-1-1-1    linear of order 4
ρ611-1-11ii-i-i1-1-1111111111111111111    linear of order 4
ρ711-1-11-i-iii1-1-1111111111111111111    linear of order 4
ρ81-1-111i-i-ii-1-11111-1-1-1111111-1-1-1-1-1-1    linear of order 4
ρ92-22-2-100001-11222-2-2-2-1-1-1-1-1-1111111    orthogonal lifted from D6
ρ102222-10000-1-1-1222222-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ112-2-22-1000011-1222-2-2-2-1-1-1-1-1-1111111    symplectic lifted from Dic3, Schur index 2
ρ1222-2-2-10000-111222222-1-1-1-1-1-1-1-1-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ13440040000400ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ139137136134ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132    orthogonal lifted from C13⋊C4
ρ144-40040000-400ζ139137136134ζ131213813513ζ1311131013313213111310133132139137136134131213813513ζ139137136134ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ131113101331321391371361341312138135131312138135131311131013313213913713613413111310133132    orthogonal lifted from C2×C13⋊C4
ρ15440040000400ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ131213813513ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ139137136134    orthogonal lifted from C13⋊C4
ρ164-40040000-400ζ131213813513ζ13111310133132ζ13913713613413913713613413121381351313111310133132ζ131213813513ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ1391371361341312138135131311131013313213111310133132139137136134131213813513139137136134    orthogonal lifted from C2×C13⋊C4
ρ174-40040000-400ζ13111310133132ζ139137136134ζ13121381351313121381351313111310133132139137136134ζ13111310133132ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ1312138135131311131013313213913713613413913713613413121381351313111310133132131213813513    orthogonal lifted from C2×C13⋊C4
ρ18440040000400ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ131213813513    orthogonal lifted from C13⋊C4
ρ194400-20000-200ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ3ζ1393ζ1373ζ1363ζ1341371363ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ1341371363ζ13113ζ13103ζ1333ζ1321311132    complex lifted from C39⋊C4
ρ204400-20000-200ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ1313813532ζ131232ζ13832ζ13532ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ1313813532ζ131232ζ13832ζ13532ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ13113ζ13103ζ1333ζ1321310133    complex lifted from C39⋊C4
ρ214400-20000-200ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ1391371361343ζ13113ζ13103ζ1333ζ132131113232ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ13932ζ13732ζ13632ζ134137136ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ13932ζ13732ζ13632ζ134137136ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ132131113232ζ131232ζ13832ζ13532ζ13131213    complex lifted from C39⋊C4
ρ224-400-20000200ζ131213813513ζ13111310133132ζ1391371361341391371361341312138135131311131013313232ζ131232ζ13832ζ13532ζ13131213ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ1321311132ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ13123ζ1383ζ1353ζ13131213ζ3ζ13113ζ13103ζ1333ζ1321311132ζ32ζ131132ζ131032ζ13332ζ132131113232ζ13932ζ13732ζ13632ζ1341371363ζ13123ζ1383ζ1353ζ13138135ζ32ζ13932ζ13732ζ13632ζ134139134    complex faithful
ρ234400-20000-200ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ1393ζ1373ζ1363ζ13413713632ζ131232ζ13832ζ13532ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ1393ζ1373ζ1363ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ131232ζ13832ζ13532ζ13138135    complex lifted from C39⋊C4
ρ244-400-20000200ζ139137136134ζ131213813513ζ1311131013313213111310133132139137136134131213813513ζ3ζ1393ζ1373ζ1363ζ1341371363ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ32ζ131232ζ13832ζ13532ζ13138135ζ3ζ13113ζ13103ζ1333ζ132131013332ζ13932ζ13732ζ13632ζ1341371363ζ13123ζ1383ζ1353ζ13138135ζ3ζ13123ζ1383ζ1353ζ13131213ζ32ζ131132ζ131032ζ13332ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134139134ζ3ζ13113ζ13103ζ1333ζ1321311132    complex faithful
ρ254-400-20000200ζ131213813513ζ13111310133132ζ13913713613413913713613413121381351313111310133132ζ32ζ131232ζ13832ζ13532ζ13138135ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ13213101333ζ13113ζ13103ζ1333ζ1321311132ζ3ζ1393ζ1373ζ1363ζ1341371363ζ13123ζ1383ζ1353ζ13138135ζ32ζ131132ζ131032ζ13332ζ1321311132ζ3ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134139134ζ3ζ13123ζ1383ζ1353ζ1313121332ζ13932ζ13732ζ13632ζ134137136    complex faithful
ρ264400-20000-200ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ32ζ131232ζ13832ζ13532ζ13138135ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ13213101333ζ13113ζ13103ζ1333ζ1321311132ζ3ζ1393ζ1373ζ1363ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ13213101333ζ13113ζ13103ζ1333ζ1321311132ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ13138135ζ32ζ13932ζ13732ζ13632ζ134137136    complex lifted from C39⋊C4
ρ274400-20000-200ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ1311131013313232ζ131232ζ13832ζ13532ζ13131213ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ1321311132ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ134137136ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ1321311132ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ13932ζ13732ζ13632ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ1393ζ1373ζ1363ζ134137136    complex lifted from C39⋊C4
ρ284-400-20000200ζ139137136134ζ131213813513ζ1311131013313213111310133132139137136134131213813513ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ131232ζ13832ζ13532ζ1313813532ζ131232ζ13832ζ13532ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134139134ζ3ζ13123ζ1383ζ1353ζ131312133ζ13123ζ1383ζ1353ζ13138135ζ3ζ13113ζ13103ζ1333ζ132131113232ζ13932ζ13732ζ13632ζ134137136ζ32ζ131132ζ131032ζ13332ζ1321311132    complex faithful
ρ294-400-20000200ζ13111310133132ζ139137136134ζ131213813513131213813513131113101331321391371361343ζ13113ζ13103ζ1333ζ132131113232ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ1321310133ζ3ζ1393ζ1373ζ1363ζ134137136ζ32ζ13932ζ13732ζ13632ζ134137136ζ32ζ131232ζ13832ζ13532ζ13138135ζ32ζ131132ζ131032ζ13332ζ1321311132ζ32ζ13932ζ13732ζ13632ζ13413913432ζ13932ζ13732ζ13632ζ134137136ζ3ζ13123ζ1383ζ1353ζ13131213ζ3ζ13113ζ13103ζ1333ζ13213111323ζ13123ζ1383ζ1353ζ13138135    complex faithful
ρ304-400-20000200ζ13111310133132ζ139137136134ζ13121381351313121381351313111310133132139137136134ζ3ζ13113ζ13103ζ1333ζ1321310133ζ32ζ131232ζ13832ζ13532ζ131381353ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ1393ζ1373ζ1363ζ13413713632ζ131232ζ13832ζ13532ζ13131213ζ3ζ13113ζ13103ζ1333ζ132131113232ζ13932ζ13732ζ13632ζ134137136ζ32ζ13932ζ13732ζ13632ζ1341391343ζ13123ζ1383ζ1353ζ13138135ζ32ζ131132ζ131032ζ13332ζ1321311132ζ3ζ13123ζ1383ζ1353ζ13131213    complex faithful

Smallest permutation representation of C2×C39⋊C4
On 78 points
Generators in S78
(1 61)(2 62)(3 63)(4 64)(5 65)(6 66)(7 67)(8 68)(9 69)(10 70)(11 71)(12 72)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 57)(37 58)(38 59)(39 60)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 61)(2 66 26 69)(3 71 12 77)(4 76 37 46)(5 42 23 54)(6 47 9 62)(7 52 34 70)(8 57 20 78)(10 67 31 55)(11 72 17 63)(13 43 28 40)(14 48)(15 53 39 56)(16 58 25 64)(18 68 36 41)(19 73 22 49)(21 44 33 65)(24 59 30 50)(27 74)(29 45 38 51)(32 60 35 75)

G:=sub<Sym(78)| (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,61)(2,66,26,69)(3,71,12,77)(4,76,37,46)(5,42,23,54)(6,47,9,62)(7,52,34,70)(8,57,20,78)(10,67,31,55)(11,72,17,63)(13,43,28,40)(14,48)(15,53,39,56)(16,58,25,64)(18,68,36,41)(19,73,22,49)(21,44,33,65)(24,59,30,50)(27,74)(29,45,38,51)(32,60,35,75)>;

G:=Group( (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,61)(2,66,26,69)(3,71,12,77)(4,76,37,46)(5,42,23,54)(6,47,9,62)(7,52,34,70)(8,57,20,78)(10,67,31,55)(11,72,17,63)(13,43,28,40)(14,48)(15,53,39,56)(16,58,25,64)(18,68,36,41)(19,73,22,49)(21,44,33,65)(24,59,30,50)(27,74)(29,45,38,51)(32,60,35,75) );

G=PermutationGroup([[(1,61),(2,62),(3,63),(4,64),(5,65),(6,66),(7,67),(8,68),(9,69),(10,70),(11,71),(12,72),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,57),(37,58),(38,59),(39,60)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,61),(2,66,26,69),(3,71,12,77),(4,76,37,46),(5,42,23,54),(6,47,9,62),(7,52,34,70),(8,57,20,78),(10,67,31,55),(11,72,17,63),(13,43,28,40),(14,48),(15,53,39,56),(16,58,25,64),(18,68,36,41),(19,73,22,49),(21,44,33,65),(24,59,30,50),(27,74),(29,45,38,51),(32,60,35,75)]])

Matrix representation of C2×C39⋊C4 in GL4(𝔽5) generated by

4000
0400
0040
0004
,
2402
0013
3201
4301
,
4000
0001
0401
0041
G:=sub<GL(4,GF(5))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,0,3,4,4,0,2,3,0,1,0,0,2,3,1,1],[4,0,0,0,0,0,4,0,0,0,0,4,0,1,1,1] >;

C2×C39⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_{39}\rtimes C_4
% in TeX

G:=Group("C2xC39:C4");
// GroupNames label

G:=SmallGroup(312,53);
// by ID

G=gap.SmallGroup(312,53);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-13,20,323,3004,1814]);
// Polycyclic

G:=Group<a,b,c|a^2=b^39=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^8>;
// generators/relations

Export

Subgroup lattice of C2×C39⋊C4 in TeX
Character table of C2×C39⋊C4 in TeX

׿
×
𝔽