Copied to
clipboard

G = (C2×D4).D10order 320 = 26·5

36th non-split extension by C2×D4 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C4.56D10, C4⋊D4.4D5, (C2×D4).36D10, (C2×C20).261D4, C10.95(C4○D8), C10.D835C2, C20.55D49C2, D4⋊Dic514C2, C20.Q834C2, (C22×C10).81D4, C20.182(C4○D4), C4.92(D42D5), C10.89(C8⋊C22), (C2×C20).354C23, (D4×C10).52C22, (C22×C4).118D10, C23.22(C5⋊D4), C57(C23.19D4), C4⋊Dic5.336C22, C2.10(D4.D10), C2.14(D4.8D10), C23.21D1015C2, (C22×C20).158C22, C10.79(C22.D4), C2.13(C23.18D10), (C5×C4⋊D4).3C2, (C2×C10).485(C2×D4), (C2×C4).170(C5⋊D4), (C5×C4⋊C4).103C22, (C2×C4).454(C22×D5), C22.160(C2×C5⋊D4), (C2×C52C8).107C22, SmallGroup(320,662)

Series: Derived Chief Lower central Upper central

C1C2×C20 — (C2×D4).D10
C1C5C10C20C2×C20C4⋊Dic5C23.21D10 — (C2×D4).D10
C5C10C2×C20 — (C2×D4).D10
C1C22C22×C4C4⋊D4

Generators and relations for (C2×D4).D10
 G = < a,b,c,d,e | a2=b4=c2=1, d10=b2, e2=a, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, dcd-1=ab2c, ece-1=b-1c, ede-1=d9 >

Subgroups: 334 in 106 conjugacy classes, 39 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C2×D4, Dic5, C20, C20, C2×C10, C2×C10, C22⋊C8, D4⋊C4, C4.Q8, C2.D8, C42⋊C2, C4⋊D4, C52C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C23.19D4, C2×C52C8, C4×Dic5, C4⋊Dic5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, D4×C10, C10.D8, C20.Q8, C20.55D4, D4⋊Dic5, C23.21D10, C5×C4⋊D4, (C2×D4).D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C22.D4, C4○D8, C8⋊C22, C5⋊D4, C22×D5, C23.19D4, D42D5, C2×C5⋊D4, D4.D10, C23.18D10, D4.8D10, (C2×D4).D10

Smallest permutation representation of (C2×D4).D10
On 160 points
Generators in S160
(1 130)(2 131)(3 132)(4 133)(5 134)(6 135)(7 136)(8 137)(9 138)(10 139)(11 140)(12 121)(13 122)(14 123)(15 124)(16 125)(17 126)(18 127)(19 128)(20 129)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 100)(30 81)(31 82)(32 83)(33 84)(34 85)(35 86)(36 87)(37 88)(38 89)(39 90)(40 91)(41 149)(42 150)(43 151)(44 152)(45 153)(46 154)(47 155)(48 156)(49 157)(50 158)(51 159)(52 160)(53 141)(54 142)(55 143)(56 144)(57 145)(58 146)(59 147)(60 148)(61 120)(62 101)(63 102)(64 103)(65 104)(66 105)(67 106)(68 107)(69 108)(70 109)(71 110)(72 111)(73 112)(74 113)(75 114)(76 115)(77 116)(78 117)(79 118)(80 119)
(1 106 11 116)(2 107 12 117)(3 108 13 118)(4 109 14 119)(5 110 15 120)(6 111 16 101)(7 112 17 102)(8 113 18 103)(9 114 19 104)(10 115 20 105)(21 42 31 52)(22 43 32 53)(23 44 33 54)(24 45 34 55)(25 46 35 56)(26 47 36 57)(27 48 37 58)(28 49 38 59)(29 50 39 60)(30 51 40 41)(61 134 71 124)(62 135 72 125)(63 136 73 126)(64 137 74 127)(65 138 75 128)(66 139 76 129)(67 140 77 130)(68 121 78 131)(69 122 79 132)(70 123 80 133)(81 159 91 149)(82 160 92 150)(83 141 93 151)(84 142 94 152)(85 143 95 153)(86 144 96 154)(87 145 97 155)(88 146 98 156)(89 147 99 157)(90 148 100 158)
(2 121)(4 123)(6 125)(8 127)(10 129)(12 131)(14 133)(16 135)(18 137)(20 139)(21 150)(22 53)(23 152)(24 55)(25 154)(26 57)(27 156)(28 59)(29 158)(30 41)(31 160)(32 43)(33 142)(34 45)(35 144)(36 47)(37 146)(38 49)(39 148)(40 51)(42 92)(44 94)(46 96)(48 98)(50 100)(52 82)(54 84)(56 86)(58 88)(60 90)(61 71)(62 101)(63 73)(64 103)(65 75)(66 105)(67 77)(68 107)(69 79)(70 109)(72 111)(74 113)(76 115)(78 117)(80 119)(81 149)(83 151)(85 153)(87 155)(89 157)(91 159)(93 141)(95 143)(97 145)(99 147)(102 112)(104 114)(106 116)(108 118)(110 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 83 130 32)(2 92 131 21)(3 81 132 30)(4 90 133 39)(5 99 134 28)(6 88 135 37)(7 97 136 26)(8 86 137 35)(9 95 138 24)(10 84 139 33)(11 93 140 22)(12 82 121 31)(13 91 122 40)(14 100 123 29)(15 89 124 38)(16 98 125 27)(17 87 126 36)(18 96 127 25)(19 85 128 34)(20 94 129 23)(41 108 149 69)(42 117 150 78)(43 106 151 67)(44 115 152 76)(45 104 153 65)(46 113 154 74)(47 102 155 63)(48 111 156 72)(49 120 157 61)(50 109 158 70)(51 118 159 79)(52 107 160 68)(53 116 141 77)(54 105 142 66)(55 114 143 75)(56 103 144 64)(57 112 145 73)(58 101 146 62)(59 110 147 71)(60 119 148 80)

G:=sub<Sym(160)| (1,130)(2,131)(3,132)(4,133)(5,134)(6,135)(7,136)(8,137)(9,138)(10,139)(11,140)(12,121)(13,122)(14,123)(15,124)(16,125)(17,126)(18,127)(19,128)(20,129)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,81)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,88)(38,89)(39,90)(40,91)(41,149)(42,150)(43,151)(44,152)(45,153)(46,154)(47,155)(48,156)(49,157)(50,158)(51,159)(52,160)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,120)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,109)(71,110)(72,111)(73,112)(74,113)(75,114)(76,115)(77,116)(78,117)(79,118)(80,119), (1,106,11,116)(2,107,12,117)(3,108,13,118)(4,109,14,119)(5,110,15,120)(6,111,16,101)(7,112,17,102)(8,113,18,103)(9,114,19,104)(10,115,20,105)(21,42,31,52)(22,43,32,53)(23,44,33,54)(24,45,34,55)(25,46,35,56)(26,47,36,57)(27,48,37,58)(28,49,38,59)(29,50,39,60)(30,51,40,41)(61,134,71,124)(62,135,72,125)(63,136,73,126)(64,137,74,127)(65,138,75,128)(66,139,76,129)(67,140,77,130)(68,121,78,131)(69,122,79,132)(70,123,80,133)(81,159,91,149)(82,160,92,150)(83,141,93,151)(84,142,94,152)(85,143,95,153)(86,144,96,154)(87,145,97,155)(88,146,98,156)(89,147,99,157)(90,148,100,158), (2,121)(4,123)(6,125)(8,127)(10,129)(12,131)(14,133)(16,135)(18,137)(20,139)(21,150)(22,53)(23,152)(24,55)(25,154)(26,57)(27,156)(28,59)(29,158)(30,41)(31,160)(32,43)(33,142)(34,45)(35,144)(36,47)(37,146)(38,49)(39,148)(40,51)(42,92)(44,94)(46,96)(48,98)(50,100)(52,82)(54,84)(56,86)(58,88)(60,90)(61,71)(62,101)(63,73)(64,103)(65,75)(66,105)(67,77)(68,107)(69,79)(70,109)(72,111)(74,113)(76,115)(78,117)(80,119)(81,149)(83,151)(85,153)(87,155)(89,157)(91,159)(93,141)(95,143)(97,145)(99,147)(102,112)(104,114)(106,116)(108,118)(110,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,83,130,32)(2,92,131,21)(3,81,132,30)(4,90,133,39)(5,99,134,28)(6,88,135,37)(7,97,136,26)(8,86,137,35)(9,95,138,24)(10,84,139,33)(11,93,140,22)(12,82,121,31)(13,91,122,40)(14,100,123,29)(15,89,124,38)(16,98,125,27)(17,87,126,36)(18,96,127,25)(19,85,128,34)(20,94,129,23)(41,108,149,69)(42,117,150,78)(43,106,151,67)(44,115,152,76)(45,104,153,65)(46,113,154,74)(47,102,155,63)(48,111,156,72)(49,120,157,61)(50,109,158,70)(51,118,159,79)(52,107,160,68)(53,116,141,77)(54,105,142,66)(55,114,143,75)(56,103,144,64)(57,112,145,73)(58,101,146,62)(59,110,147,71)(60,119,148,80)>;

G:=Group( (1,130)(2,131)(3,132)(4,133)(5,134)(6,135)(7,136)(8,137)(9,138)(10,139)(11,140)(12,121)(13,122)(14,123)(15,124)(16,125)(17,126)(18,127)(19,128)(20,129)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,81)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,88)(38,89)(39,90)(40,91)(41,149)(42,150)(43,151)(44,152)(45,153)(46,154)(47,155)(48,156)(49,157)(50,158)(51,159)(52,160)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,120)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,109)(71,110)(72,111)(73,112)(74,113)(75,114)(76,115)(77,116)(78,117)(79,118)(80,119), (1,106,11,116)(2,107,12,117)(3,108,13,118)(4,109,14,119)(5,110,15,120)(6,111,16,101)(7,112,17,102)(8,113,18,103)(9,114,19,104)(10,115,20,105)(21,42,31,52)(22,43,32,53)(23,44,33,54)(24,45,34,55)(25,46,35,56)(26,47,36,57)(27,48,37,58)(28,49,38,59)(29,50,39,60)(30,51,40,41)(61,134,71,124)(62,135,72,125)(63,136,73,126)(64,137,74,127)(65,138,75,128)(66,139,76,129)(67,140,77,130)(68,121,78,131)(69,122,79,132)(70,123,80,133)(81,159,91,149)(82,160,92,150)(83,141,93,151)(84,142,94,152)(85,143,95,153)(86,144,96,154)(87,145,97,155)(88,146,98,156)(89,147,99,157)(90,148,100,158), (2,121)(4,123)(6,125)(8,127)(10,129)(12,131)(14,133)(16,135)(18,137)(20,139)(21,150)(22,53)(23,152)(24,55)(25,154)(26,57)(27,156)(28,59)(29,158)(30,41)(31,160)(32,43)(33,142)(34,45)(35,144)(36,47)(37,146)(38,49)(39,148)(40,51)(42,92)(44,94)(46,96)(48,98)(50,100)(52,82)(54,84)(56,86)(58,88)(60,90)(61,71)(62,101)(63,73)(64,103)(65,75)(66,105)(67,77)(68,107)(69,79)(70,109)(72,111)(74,113)(76,115)(78,117)(80,119)(81,149)(83,151)(85,153)(87,155)(89,157)(91,159)(93,141)(95,143)(97,145)(99,147)(102,112)(104,114)(106,116)(108,118)(110,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,83,130,32)(2,92,131,21)(3,81,132,30)(4,90,133,39)(5,99,134,28)(6,88,135,37)(7,97,136,26)(8,86,137,35)(9,95,138,24)(10,84,139,33)(11,93,140,22)(12,82,121,31)(13,91,122,40)(14,100,123,29)(15,89,124,38)(16,98,125,27)(17,87,126,36)(18,96,127,25)(19,85,128,34)(20,94,129,23)(41,108,149,69)(42,117,150,78)(43,106,151,67)(44,115,152,76)(45,104,153,65)(46,113,154,74)(47,102,155,63)(48,111,156,72)(49,120,157,61)(50,109,158,70)(51,118,159,79)(52,107,160,68)(53,116,141,77)(54,105,142,66)(55,114,143,75)(56,103,144,64)(57,112,145,73)(58,101,146,62)(59,110,147,71)(60,119,148,80) );

G=PermutationGroup([[(1,130),(2,131),(3,132),(4,133),(5,134),(6,135),(7,136),(8,137),(9,138),(10,139),(11,140),(12,121),(13,122),(14,123),(15,124),(16,125),(17,126),(18,127),(19,128),(20,129),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,100),(30,81),(31,82),(32,83),(33,84),(34,85),(35,86),(36,87),(37,88),(38,89),(39,90),(40,91),(41,149),(42,150),(43,151),(44,152),(45,153),(46,154),(47,155),(48,156),(49,157),(50,158),(51,159),(52,160),(53,141),(54,142),(55,143),(56,144),(57,145),(58,146),(59,147),(60,148),(61,120),(62,101),(63,102),(64,103),(65,104),(66,105),(67,106),(68,107),(69,108),(70,109),(71,110),(72,111),(73,112),(74,113),(75,114),(76,115),(77,116),(78,117),(79,118),(80,119)], [(1,106,11,116),(2,107,12,117),(3,108,13,118),(4,109,14,119),(5,110,15,120),(6,111,16,101),(7,112,17,102),(8,113,18,103),(9,114,19,104),(10,115,20,105),(21,42,31,52),(22,43,32,53),(23,44,33,54),(24,45,34,55),(25,46,35,56),(26,47,36,57),(27,48,37,58),(28,49,38,59),(29,50,39,60),(30,51,40,41),(61,134,71,124),(62,135,72,125),(63,136,73,126),(64,137,74,127),(65,138,75,128),(66,139,76,129),(67,140,77,130),(68,121,78,131),(69,122,79,132),(70,123,80,133),(81,159,91,149),(82,160,92,150),(83,141,93,151),(84,142,94,152),(85,143,95,153),(86,144,96,154),(87,145,97,155),(88,146,98,156),(89,147,99,157),(90,148,100,158)], [(2,121),(4,123),(6,125),(8,127),(10,129),(12,131),(14,133),(16,135),(18,137),(20,139),(21,150),(22,53),(23,152),(24,55),(25,154),(26,57),(27,156),(28,59),(29,158),(30,41),(31,160),(32,43),(33,142),(34,45),(35,144),(36,47),(37,146),(38,49),(39,148),(40,51),(42,92),(44,94),(46,96),(48,98),(50,100),(52,82),(54,84),(56,86),(58,88),(60,90),(61,71),(62,101),(63,73),(64,103),(65,75),(66,105),(67,77),(68,107),(69,79),(70,109),(72,111),(74,113),(76,115),(78,117),(80,119),(81,149),(83,151),(85,153),(87,155),(89,157),(91,159),(93,141),(95,143),(97,145),(99,147),(102,112),(104,114),(106,116),(108,118),(110,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,83,130,32),(2,92,131,21),(3,81,132,30),(4,90,133,39),(5,99,134,28),(6,88,135,37),(7,97,136,26),(8,86,137,35),(9,95,138,24),(10,84,139,33),(11,93,140,22),(12,82,121,31),(13,91,122,40),(14,100,123,29),(15,89,124,38),(16,98,125,27),(17,87,126,36),(18,96,127,25),(19,85,128,34),(20,94,129,23),(41,108,149,69),(42,117,150,78),(43,106,151,67),(44,115,152,76),(45,104,153,65),(46,113,154,74),(47,102,155,63),(48,111,156,72),(49,120,157,61),(50,109,158,70),(51,118,159,79),(52,107,160,68),(53,116,141,77),(54,105,142,66),(55,114,143,75),(56,103,144,64),(57,112,145,73),(58,101,146,62),(59,110,147,71),(60,119,148,80)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order12222244444444455888810···10101010101010101020···2020202020
size111148222282020202022202020202···2444488884···48888

47 irreducible representations

dim111111122222222224444
type++++++++++++++-
imageC1C2C2C2C2C2C2D4D4D5C4○D4D10D10D10C4○D8C5⋊D4C5⋊D4C8⋊C22D42D5D4.D10D4.8D10
kernel(C2×D4).D10C10.D8C20.Q8C20.55D4D4⋊Dic5C23.21D10C5×C4⋊D4C2×C20C22×C10C4⋊D4C20C4⋊C4C22×C4C2×D4C10C2×C4C23C10C4C2C2
# reps111121111242224441444

Matrix representation of (C2×D4).D10 in GL6(𝔽41)

4000000
0400000
001000
000100
0000400
0000040
,
1220000
26400000
001000
000100
0000400
0000040
,
100000
26400000
001000
000100
000010
00002640
,
900000
090000
00203500
00151400
0000122
0000040
,
020000
2000000
00363800
008500
0000327
000009

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,26,0,0,0,0,22,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,26,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,26,0,0,0,0,0,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,20,15,0,0,0,0,35,14,0,0,0,0,0,0,1,0,0,0,0,0,22,40],[0,20,0,0,0,0,2,0,0,0,0,0,0,0,36,8,0,0,0,0,38,5,0,0,0,0,0,0,32,0,0,0,0,0,7,9] >;

(C2×D4).D10 in GAP, Magma, Sage, TeX

(C_2\times D_4).D_{10}
% in TeX

G:=Group("(C2xD4).D10");
// GroupNames label

G:=SmallGroup(320,662);
// by ID

G=gap.SmallGroup(320,662);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,232,254,219,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^10=b^2,e^2=a,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=a*b^2*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^9>;
// generators/relations

׿
×
𝔽