Extensions 1→N→G→Q→1 with N=C2 and Q=D4.D10

Direct product G=N×Q with N=C2 and Q=D4.D10
dρLabelID
C2×D4.D1080C2xD4.D10320,1465


Non-split extensions G=N.Q with N=C2 and Q=D4.D10
extensionφ:Q→Aut NdρLabelID
C2.1(D4.D10) = C20.47(C4⋊C4)central extension (φ=1)160C2.1(D4.D10)320,591
C2.2(D4.D10) = C4○D209C4central extension (φ=1)160C2.2(D4.D10)320,593
C2.3(D4.D10) = C42.48D10central extension (φ=1)160C2.3(D4.D10)320,641
C2.4(D4.D10) = C42.51D10central extension (φ=1)160C2.4(D4.D10)320,645
C2.5(D4.D10) = (D4×C10)⋊18C4central extension (φ=1)80C2.5(D4.D10)320,842
C2.6(D4.D10) = C4⋊C4.228D10central stem extension (φ=1)160C2.6(D4.D10)320,595
C2.7(D4.D10) = C4⋊C4.230D10central stem extension (φ=1)160C2.7(D4.D10)320,597
C2.8(D4.D10) = D4.3Dic10central stem extension (φ=1)160C2.8(D4.D10)320,636
C2.9(D4.D10) = D4.1D20central stem extension (φ=1)160C2.9(D4.D10)320,643
C2.10(D4.D10) = (C2×D4).D10central stem extension (φ=1)160C2.10(D4.D10)320,662
C2.11(D4.D10) = D2017D4central stem extension (φ=1)160C2.11(D4.D10)320,664
C2.12(D4.D10) = C4⋊D4⋊D5central stem extension (φ=1)160C2.12(D4.D10)320,666
C2.13(D4.D10) = C4.(D4×D5)central stem extension (φ=1)160C2.13(D4.D10)320,669
C2.14(D4.D10) = C42.72D10central stem extension (φ=1)160C2.14(D4.D10)320,698
C2.15(D4.D10) = C202D8central stem extension (φ=1)160C2.15(D4.D10)320,699
C2.16(D4.D10) = C42.74D10central stem extension (φ=1)160C2.16(D4.D10)320,701
C2.17(D4.D10) = Dic109D4central stem extension (φ=1)160C2.17(D4.D10)320,702
C2.18(D4.D10) = C42.76D10central stem extension (φ=1)320C2.18(D4.D10)320,707
C2.19(D4.D10) = D205Q8central stem extension (φ=1)160C2.19(D4.D10)320,711
C2.20(D4.D10) = C42.82D10central stem extension (φ=1)160C2.20(D4.D10)320,716
C2.21(D4.D10) = Dic105Q8central stem extension (φ=1)320C2.21(D4.D10)320,718
C2.22(D4.D10) = (C2×C10)⋊8D8central stem extension (φ=1)80C2.22(D4.D10)320,844
C2.23(D4.D10) = (C5×D4).31D4central stem extension (φ=1)80C2.23(D4.D10)320,845

׿
×
𝔽