Extensions 1→N→G→Q→1 with N=C16 and Q=D10

Direct product G=N×Q with N=C16 and Q=D10
dρLabelID
D5×C2×C16160D5xC2xC16320,526

Semidirect products G=N:Q with N=C16 and Q=D10
extensionφ:Q→Aut NdρLabelID
C161D10 = D80⋊C2φ: D10/C5C22 ⊆ Aut C16804+C16:1D10320,535
C162D10 = D16⋊D5φ: D10/C5C22 ⊆ Aut C16804C16:2D10320,538
C163D10 = C16⋊D10φ: D10/C5C22 ⊆ Aut C16804+C16:3D10320,541
C164D10 = D5×D16φ: D10/D5C2 ⊆ Aut C16804+C16:4D10320,537
C165D10 = D5×SD32φ: D10/D5C2 ⊆ Aut C16804C16:5D10320,540
C166D10 = D5×M5(2)φ: D10/D5C2 ⊆ Aut C16804C16:6D10320,533
C167D10 = C2×D80φ: D10/C10C2 ⊆ Aut C16160C16:7D10320,529
C168D10 = C2×C16⋊D5φ: D10/C10C2 ⊆ Aut C16160C16:8D10320,530
C169D10 = C2×C80⋊C2φ: D10/C10C2 ⊆ Aut C16160C16:9D10320,527

Non-split extensions G=N.Q with N=C16 and Q=D10
extensionφ:Q→Aut NdρLabelID
C16.1D10 = C16.D10φ: D10/C5C22 ⊆ Aut C161604-C16.1D10320,536
C16.2D10 = SD32⋊D5φ: D10/C5C22 ⊆ Aut C161604-C16.2D10320,542
C16.3D10 = Q32⋊D5φ: D10/C5C22 ⊆ Aut C161604C16.3D10320,545
C16.4D10 = C5⋊D32φ: D10/D5C2 ⊆ Aut C161604+C16.4D10320,77
C16.5D10 = D16.D5φ: D10/D5C2 ⊆ Aut C161604-C16.5D10320,78
C16.6D10 = C5⋊SD64φ: D10/D5C2 ⊆ Aut C161604+C16.6D10320,79
C16.7D10 = C5⋊Q64φ: D10/D5C2 ⊆ Aut C163204-C16.7D10320,80
C16.8D10 = D163D5φ: D10/D5C2 ⊆ Aut C161604-C16.8D10320,539
C16.9D10 = D5×Q32φ: D10/D5C2 ⊆ Aut C161604-C16.9D10320,544
C16.10D10 = D805C2φ: D10/D5C2 ⊆ Aut C161604+C16.10D10320,546
C16.11D10 = SD323D5φ: D10/D5C2 ⊆ Aut C161604C16.11D10320,543
C16.12D10 = D20.5C8φ: D10/D5C2 ⊆ Aut C161604C16.12D10320,534
C16.13D10 = D160φ: D10/C10C2 ⊆ Aut C161602+C16.13D10320,6
C16.14D10 = C160⋊C2φ: D10/C10C2 ⊆ Aut C161602C16.14D10320,7
C16.15D10 = Dic80φ: D10/C10C2 ⊆ Aut C163202-C16.15D10320,8
C16.16D10 = D807C2φ: D10/C10C2 ⊆ Aut C161602C16.16D10320,531
C16.17D10 = C2×Dic40φ: D10/C10C2 ⊆ Aut C16320C16.17D10320,532
C16.18D10 = D20.6C8φ: D10/C10C2 ⊆ Aut C161602C16.18D10320,528
C16.19D10 = D5×C32central extension (φ=1)1602C16.19D10320,4
C16.20D10 = C32⋊D5central extension (φ=1)1602C16.20D10320,5
C16.21D10 = C2×C52C32central extension (φ=1)320C16.21D10320,56
C16.22D10 = C80.9C4central extension (φ=1)1602C16.22D10320,57

׿
×
𝔽