Copied to
clipboard

G = C4○D209C4order 320 = 26·5

3rd semidirect product of C4○D20 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4○D209C4, D2030(C2×C4), C4.60(C2×D20), (C2×C4).43D20, C4⋊C4.226D10, C20.140(C2×D4), (C2×C20).134D4, D206C424C2, Dic1027(C2×C4), C10.Q1624C2, (C22×C4).93D10, C10.83(C8⋊C22), C20.67(C22⋊C4), C20.119(C22×C4), (C2×C20).319C23, (C22×C10).184D4, C23.76(C5⋊D4), C54(C23.36D4), C4.37(D10⋊C4), C2.2(D4.D10), C2.2(C20.C23), (C2×D20).241C22, C10.83(C8.C22), C22.4(D10⋊C4), (C22×C20).134C22, (C2×Dic10).268C22, (C2×C4⋊C4)⋊2D5, (C10×C4⋊C4)⋊2C2, C4.49(C2×C4×D5), (C2×C4).39(C4×D5), (C2×C4○D20).6C2, (C2×C4.Dic5)⋊8C2, (C2×C20).251(C2×C4), (C2×C10).439(C2×D4), C10.80(C2×C22⋊C4), C22.58(C2×C5⋊D4), C2.12(C2×D10⋊C4), (C2×C4).182(C5⋊D4), (C5×C4⋊C4).257C22, (C2×C52C8).80C22, (C2×C4).419(C22×D5), (C2×C10).122(C22⋊C4), SmallGroup(320,593)

Series: Derived Chief Lower central Upper central

C1C20 — C4○D209C4
C1C5C10C2×C10C2×C20C2×D20C2×C4○D20 — C4○D209C4
C5C10C20 — C4○D209C4
C1C22C22×C4C2×C4⋊C4

Generators and relations for C4○D209C4
 G = < a,b,c,d | a4=c2=d4=1, b10=a2, ab=ba, ac=ca, dad-1=a-1, cbc=a2b9, dbd-1=a2b, dcd-1=a2b5c >

Subgroups: 606 in 162 conjugacy classes, 63 normal (29 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, C20, D10, C2×C10, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C2×C4⋊C4, C2×M4(2), C2×C4○D4, C52C8, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C22×D5, C22×C10, C23.36D4, C2×C52C8, C4.Dic5, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C4○D20, C2×C5⋊D4, C22×C20, C22×C20, D206C4, C10.Q16, C2×C4.Dic5, C10×C4⋊C4, C2×C4○D20, C4○D209C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C2×C22⋊C4, C8⋊C22, C8.C22, C4×D5, D20, C5⋊D4, C22×D5, C23.36D4, D10⋊C4, C2×C4×D5, C2×D20, C2×C5⋊D4, C2×D10⋊C4, D4.D10, C20.C23, C4○D209C4

Smallest permutation representation of C4○D209C4
On 160 points
Generators in S160
(1 86 11 96)(2 87 12 97)(3 88 13 98)(4 89 14 99)(5 90 15 100)(6 91 16 81)(7 92 17 82)(8 93 18 83)(9 94 19 84)(10 95 20 85)(21 116 31 106)(22 117 32 107)(23 118 33 108)(24 119 34 109)(25 120 35 110)(26 101 36 111)(27 102 37 112)(28 103 38 113)(29 104 39 114)(30 105 40 115)(41 133 51 123)(42 134 52 124)(43 135 53 125)(44 136 54 126)(45 137 55 127)(46 138 56 128)(47 139 57 129)(48 140 58 130)(49 121 59 131)(50 122 60 132)(61 156 71 146)(62 157 72 147)(63 158 73 148)(64 159 74 149)(65 160 75 150)(66 141 76 151)(67 142 77 152)(68 143 78 153)(69 144 79 154)(70 145 80 155)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 32)(22 31)(23 30)(24 29)(25 28)(26 27)(33 40)(34 39)(35 38)(36 37)(41 51)(42 50)(43 49)(44 48)(45 47)(52 60)(53 59)(54 58)(55 57)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 72)(81 90)(82 89)(83 88)(84 87)(85 86)(91 100)(92 99)(93 98)(94 97)(95 96)(101 102)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(109 114)(110 113)(111 112)(121 135)(122 134)(123 133)(124 132)(125 131)(126 130)(127 129)(136 140)(137 139)(141 151)(142 150)(143 149)(144 148)(145 147)(152 160)(153 159)(154 158)(155 157)
(1 69 27 44)(2 80 28 55)(3 71 29 46)(4 62 30 57)(5 73 31 48)(6 64 32 59)(7 75 33 50)(8 66 34 41)(9 77 35 52)(10 68 36 43)(11 79 37 54)(12 70 38 45)(13 61 39 56)(14 72 40 47)(15 63 21 58)(16 74 22 49)(17 65 23 60)(18 76 24 51)(19 67 25 42)(20 78 26 53)(81 159 117 131)(82 150 118 122)(83 141 119 133)(84 152 120 124)(85 143 101 135)(86 154 102 126)(87 145 103 137)(88 156 104 128)(89 147 105 139)(90 158 106 130)(91 149 107 121)(92 160 108 132)(93 151 109 123)(94 142 110 134)(95 153 111 125)(96 144 112 136)(97 155 113 127)(98 146 114 138)(99 157 115 129)(100 148 116 140)

G:=sub<Sym(160)| (1,86,11,96)(2,87,12,97)(3,88,13,98)(4,89,14,99)(5,90,15,100)(6,91,16,81)(7,92,17,82)(8,93,18,83)(9,94,19,84)(10,95,20,85)(21,116,31,106)(22,117,32,107)(23,118,33,108)(24,119,34,109)(25,120,35,110)(26,101,36,111)(27,102,37,112)(28,103,38,113)(29,104,39,114)(30,105,40,115)(41,133,51,123)(42,134,52,124)(43,135,53,125)(44,136,54,126)(45,137,55,127)(46,138,56,128)(47,139,57,129)(48,140,58,130)(49,121,59,131)(50,122,60,132)(61,156,71,146)(62,157,72,147)(63,158,73,148)(64,159,74,149)(65,160,75,150)(66,141,76,151)(67,142,77,152)(68,143,78,153)(69,144,79,154)(70,145,80,155), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(33,40)(34,39)(35,38)(36,37)(41,51)(42,50)(43,49)(44,48)(45,47)(52,60)(53,59)(54,58)(55,57)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(81,90)(82,89)(83,88)(84,87)(85,86)(91,100)(92,99)(93,98)(94,97)(95,96)(101,102)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)(136,140)(137,139)(141,151)(142,150)(143,149)(144,148)(145,147)(152,160)(153,159)(154,158)(155,157), (1,69,27,44)(2,80,28,55)(3,71,29,46)(4,62,30,57)(5,73,31,48)(6,64,32,59)(7,75,33,50)(8,66,34,41)(9,77,35,52)(10,68,36,43)(11,79,37,54)(12,70,38,45)(13,61,39,56)(14,72,40,47)(15,63,21,58)(16,74,22,49)(17,65,23,60)(18,76,24,51)(19,67,25,42)(20,78,26,53)(81,159,117,131)(82,150,118,122)(83,141,119,133)(84,152,120,124)(85,143,101,135)(86,154,102,126)(87,145,103,137)(88,156,104,128)(89,147,105,139)(90,158,106,130)(91,149,107,121)(92,160,108,132)(93,151,109,123)(94,142,110,134)(95,153,111,125)(96,144,112,136)(97,155,113,127)(98,146,114,138)(99,157,115,129)(100,148,116,140)>;

G:=Group( (1,86,11,96)(2,87,12,97)(3,88,13,98)(4,89,14,99)(5,90,15,100)(6,91,16,81)(7,92,17,82)(8,93,18,83)(9,94,19,84)(10,95,20,85)(21,116,31,106)(22,117,32,107)(23,118,33,108)(24,119,34,109)(25,120,35,110)(26,101,36,111)(27,102,37,112)(28,103,38,113)(29,104,39,114)(30,105,40,115)(41,133,51,123)(42,134,52,124)(43,135,53,125)(44,136,54,126)(45,137,55,127)(46,138,56,128)(47,139,57,129)(48,140,58,130)(49,121,59,131)(50,122,60,132)(61,156,71,146)(62,157,72,147)(63,158,73,148)(64,159,74,149)(65,160,75,150)(66,141,76,151)(67,142,77,152)(68,143,78,153)(69,144,79,154)(70,145,80,155), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(33,40)(34,39)(35,38)(36,37)(41,51)(42,50)(43,49)(44,48)(45,47)(52,60)(53,59)(54,58)(55,57)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(81,90)(82,89)(83,88)(84,87)(85,86)(91,100)(92,99)(93,98)(94,97)(95,96)(101,102)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)(136,140)(137,139)(141,151)(142,150)(143,149)(144,148)(145,147)(152,160)(153,159)(154,158)(155,157), (1,69,27,44)(2,80,28,55)(3,71,29,46)(4,62,30,57)(5,73,31,48)(6,64,32,59)(7,75,33,50)(8,66,34,41)(9,77,35,52)(10,68,36,43)(11,79,37,54)(12,70,38,45)(13,61,39,56)(14,72,40,47)(15,63,21,58)(16,74,22,49)(17,65,23,60)(18,76,24,51)(19,67,25,42)(20,78,26,53)(81,159,117,131)(82,150,118,122)(83,141,119,133)(84,152,120,124)(85,143,101,135)(86,154,102,126)(87,145,103,137)(88,156,104,128)(89,147,105,139)(90,158,106,130)(91,149,107,121)(92,160,108,132)(93,151,109,123)(94,142,110,134)(95,153,111,125)(96,144,112,136)(97,155,113,127)(98,146,114,138)(99,157,115,129)(100,148,116,140) );

G=PermutationGroup([[(1,86,11,96),(2,87,12,97),(3,88,13,98),(4,89,14,99),(5,90,15,100),(6,91,16,81),(7,92,17,82),(8,93,18,83),(9,94,19,84),(10,95,20,85),(21,116,31,106),(22,117,32,107),(23,118,33,108),(24,119,34,109),(25,120,35,110),(26,101,36,111),(27,102,37,112),(28,103,38,113),(29,104,39,114),(30,105,40,115),(41,133,51,123),(42,134,52,124),(43,135,53,125),(44,136,54,126),(45,137,55,127),(46,138,56,128),(47,139,57,129),(48,140,58,130),(49,121,59,131),(50,122,60,132),(61,156,71,146),(62,157,72,147),(63,158,73,148),(64,159,74,149),(65,160,75,150),(66,141,76,151),(67,142,77,152),(68,143,78,153),(69,144,79,154),(70,145,80,155)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,32),(22,31),(23,30),(24,29),(25,28),(26,27),(33,40),(34,39),(35,38),(36,37),(41,51),(42,50),(43,49),(44,48),(45,47),(52,60),(53,59),(54,58),(55,57),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,72),(81,90),(82,89),(83,88),(84,87),(85,86),(91,100),(92,99),(93,98),(94,97),(95,96),(101,102),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(109,114),(110,113),(111,112),(121,135),(122,134),(123,133),(124,132),(125,131),(126,130),(127,129),(136,140),(137,139),(141,151),(142,150),(143,149),(144,148),(145,147),(152,160),(153,159),(154,158),(155,157)], [(1,69,27,44),(2,80,28,55),(3,71,29,46),(4,62,30,57),(5,73,31,48),(6,64,32,59),(7,75,33,50),(8,66,34,41),(9,77,35,52),(10,68,36,43),(11,79,37,54),(12,70,38,45),(13,61,39,56),(14,72,40,47),(15,63,21,58),(16,74,22,49),(17,65,23,60),(18,76,24,51),(19,67,25,42),(20,78,26,53),(81,159,117,131),(82,150,118,122),(83,141,119,133),(84,152,120,124),(85,143,101,135),(86,154,102,126),(87,145,103,137),(88,156,104,128),(89,147,105,139),(90,158,106,130),(91,149,107,121),(92,160,108,132),(93,151,109,123),(94,142,110,134),(95,153,111,125),(96,144,112,136),(97,155,113,127),(98,146,114,138),(99,157,115,129),(100,148,116,140)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D10A···10N20A···20X
order12222222444444444455888810···1020···20
size111122202022224444202022202020202···24···4

62 irreducible representations

dim11111112222222224444
type+++++++++++++-
imageC1C2C2C2C2C2C4D4D4D5D10D10C4×D5D20C5⋊D4C5⋊D4C8⋊C22C8.C22D4.D10C20.C23
kernelC4○D209C4D206C4C10.Q16C2×C4.Dic5C10×C4⋊C4C2×C4○D20C4○D20C2×C20C22×C10C2×C4⋊C4C4⋊C4C22×C4C2×C4C2×C4C2×C4C23C10C10C2C2
# reps12211183124288441144

Matrix representation of C4○D209C4 in GL6(𝔽41)

4000000
0400000
00236512
0035182936
0018351835
00623623
,
4000000
0400000
00040039
00135229
000101
00406406
,
4000000
910000
00040039
00400390
000001
000010
,
32390000
090000
002133413
0028392830
0015143928
002717132

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,23,35,18,6,0,0,6,18,35,23,0,0,5,29,18,6,0,0,12,36,35,23],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,40,0,0,40,35,1,6,0,0,0,2,0,40,0,0,39,29,1,6],[40,9,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,39,0,1,0,0,39,0,1,0],[32,0,0,0,0,0,39,9,0,0,0,0,0,0,2,28,15,27,0,0,13,39,14,17,0,0,34,28,39,13,0,0,13,30,28,2] >;

C4○D209C4 in GAP, Magma, Sage, TeX

C_4\circ D_{20}\rtimes_9C_4
% in TeX

G:=Group("C4oD20:9C4");
// GroupNames label

G:=SmallGroup(320,593);
// by ID

G=gap.SmallGroup(320,593);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,422,387,58,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^2=d^4=1,b^10=a^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c=a^2*b^9,d*b*d^-1=a^2*b,d*c*d^-1=a^2*b^5*c>;
// generators/relations

׿
×
𝔽