metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20⋊1D8, C4⋊2D40, D20⋊8D4, C42.34D10, C4⋊C8⋊3D5, (C2×D40)⋊7C2, C5⋊2(C4⋊D8), C2.9(C2×D40), C10.7(C2×D8), (C4×D20)⋊17C2, C20⋊4D4⋊7C2, C4.130(D4×D5), (C2×C8).21D10, D20⋊5C4⋊7C2, (C2×C20).122D4, (C2×C4).133D20, C20.339(C2×D4), (C2×C40).22C22, (C4×C20).69C22, C20.328(C4○D4), C2.17(C8⋊D10), C10.38(C4⋊D4), C2.11(C4⋊D20), C10.14(C8⋊C22), (C2×C20).753C23, C4.44(Q8⋊2D5), (C2×D20).16C22, C22.116(C2×D20), C4⋊Dic5.273C22, (C5×C4⋊C8)⋊5C2, (C2×C10).136(C2×D4), (C2×C4).698(C22×D5), SmallGroup(320,470)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C42 — C4⋊C8 |
Generators and relations for C4⋊D40
G = < a,b,c | a4=b40=c2=1, bab-1=cac=a-1, cbc=b-1 >
Subgroups: 854 in 140 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, Dic5, C20, C20, C20, D10, C2×C10, D4⋊C4, C4⋊C8, C4×D4, C4⋊1D4, C2×D8, C40, C4×D5, D20, D20, C2×Dic5, C2×C20, C22×D5, C4⋊D8, D40, C4⋊Dic5, D10⋊C4, C4×C20, C2×C40, C2×C4×D5, C2×D20, C2×D20, C2×D20, D20⋊5C4, C5×C4⋊C8, C4×D20, C20⋊4D4, C2×D40, C4⋊D40
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, C4○D4, D10, C4⋊D4, C2×D8, C8⋊C22, D20, C22×D5, C4⋊D8, D40, C2×D20, D4×D5, Q8⋊2D5, C4⋊D20, C2×D40, C8⋊D10, C4⋊D40
(1 67 132 96)(2 97 133 68)(3 69 134 98)(4 99 135 70)(5 71 136 100)(6 101 137 72)(7 73 138 102)(8 103 139 74)(9 75 140 104)(10 105 141 76)(11 77 142 106)(12 107 143 78)(13 79 144 108)(14 109 145 80)(15 41 146 110)(16 111 147 42)(17 43 148 112)(18 113 149 44)(19 45 150 114)(20 115 151 46)(21 47 152 116)(22 117 153 48)(23 49 154 118)(24 119 155 50)(25 51 156 120)(26 81 157 52)(27 53 158 82)(28 83 159 54)(29 55 160 84)(30 85 121 56)(31 57 122 86)(32 87 123 58)(33 59 124 88)(34 89 125 60)(35 61 126 90)(36 91 127 62)(37 63 128 92)(38 93 129 64)(39 65 130 94)(40 95 131 66)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 40)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(41 96)(42 95)(43 94)(44 93)(45 92)(46 91)(47 90)(48 89)(49 88)(50 87)(51 86)(52 85)(53 84)(54 83)(55 82)(56 81)(57 120)(58 119)(59 118)(60 117)(61 116)(62 115)(63 114)(64 113)(65 112)(66 111)(67 110)(68 109)(69 108)(70 107)(71 106)(72 105)(73 104)(74 103)(75 102)(76 101)(77 100)(78 99)(79 98)(80 97)(121 157)(122 156)(123 155)(124 154)(125 153)(126 152)(127 151)(128 150)(129 149)(130 148)(131 147)(132 146)(133 145)(134 144)(135 143)(136 142)(137 141)(138 140)(158 160)
G:=sub<Sym(160)| (1,67,132,96)(2,97,133,68)(3,69,134,98)(4,99,135,70)(5,71,136,100)(6,101,137,72)(7,73,138,102)(8,103,139,74)(9,75,140,104)(10,105,141,76)(11,77,142,106)(12,107,143,78)(13,79,144,108)(14,109,145,80)(15,41,146,110)(16,111,147,42)(17,43,148,112)(18,113,149,44)(19,45,150,114)(20,115,151,46)(21,47,152,116)(22,117,153,48)(23,49,154,118)(24,119,155,50)(25,51,156,120)(26,81,157,52)(27,53,158,82)(28,83,159,54)(29,55,160,84)(30,85,121,56)(31,57,122,86)(32,87,123,58)(33,59,124,88)(34,89,125,60)(35,61,126,90)(36,91,127,62)(37,63,128,92)(38,93,129,64)(39,65,130,94)(40,95,131,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(41,96)(42,95)(43,94)(44,93)(45,92)(46,91)(47,90)(48,89)(49,88)(50,87)(51,86)(52,85)(53,84)(54,83)(55,82)(56,81)(57,120)(58,119)(59,118)(60,117)(61,116)(62,115)(63,114)(64,113)(65,112)(66,111)(67,110)(68,109)(69,108)(70,107)(71,106)(72,105)(73,104)(74,103)(75,102)(76,101)(77,100)(78,99)(79,98)(80,97)(121,157)(122,156)(123,155)(124,154)(125,153)(126,152)(127,151)(128,150)(129,149)(130,148)(131,147)(132,146)(133,145)(134,144)(135,143)(136,142)(137,141)(138,140)(158,160)>;
G:=Group( (1,67,132,96)(2,97,133,68)(3,69,134,98)(4,99,135,70)(5,71,136,100)(6,101,137,72)(7,73,138,102)(8,103,139,74)(9,75,140,104)(10,105,141,76)(11,77,142,106)(12,107,143,78)(13,79,144,108)(14,109,145,80)(15,41,146,110)(16,111,147,42)(17,43,148,112)(18,113,149,44)(19,45,150,114)(20,115,151,46)(21,47,152,116)(22,117,153,48)(23,49,154,118)(24,119,155,50)(25,51,156,120)(26,81,157,52)(27,53,158,82)(28,83,159,54)(29,55,160,84)(30,85,121,56)(31,57,122,86)(32,87,123,58)(33,59,124,88)(34,89,125,60)(35,61,126,90)(36,91,127,62)(37,63,128,92)(38,93,129,64)(39,65,130,94)(40,95,131,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(41,96)(42,95)(43,94)(44,93)(45,92)(46,91)(47,90)(48,89)(49,88)(50,87)(51,86)(52,85)(53,84)(54,83)(55,82)(56,81)(57,120)(58,119)(59,118)(60,117)(61,116)(62,115)(63,114)(64,113)(65,112)(66,111)(67,110)(68,109)(69,108)(70,107)(71,106)(72,105)(73,104)(74,103)(75,102)(76,101)(77,100)(78,99)(79,98)(80,97)(121,157)(122,156)(123,155)(124,154)(125,153)(126,152)(127,151)(128,150)(129,149)(130,148)(131,147)(132,146)(133,145)(134,144)(135,143)(136,142)(137,141)(138,140)(158,160) );
G=PermutationGroup([[(1,67,132,96),(2,97,133,68),(3,69,134,98),(4,99,135,70),(5,71,136,100),(6,101,137,72),(7,73,138,102),(8,103,139,74),(9,75,140,104),(10,105,141,76),(11,77,142,106),(12,107,143,78),(13,79,144,108),(14,109,145,80),(15,41,146,110),(16,111,147,42),(17,43,148,112),(18,113,149,44),(19,45,150,114),(20,115,151,46),(21,47,152,116),(22,117,153,48),(23,49,154,118),(24,119,155,50),(25,51,156,120),(26,81,157,52),(27,53,158,82),(28,83,159,54),(29,55,160,84),(30,85,121,56),(31,57,122,86),(32,87,123,58),(33,59,124,88),(34,89,125,60),(35,61,126,90),(36,91,127,62),(37,63,128,92),(38,93,129,64),(39,65,130,94),(40,95,131,66)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,40),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(41,96),(42,95),(43,94),(44,93),(45,92),(46,91),(47,90),(48,89),(49,88),(50,87),(51,86),(52,85),(53,84),(54,83),(55,82),(56,81),(57,120),(58,119),(59,118),(60,117),(61,116),(62,115),(63,114),(64,113),(65,112),(66,111),(67,110),(68,109),(69,108),(70,107),(71,106),(72,105),(73,104),(74,103),(75,102),(76,101),(77,100),(78,99),(79,98),(80,97),(121,157),(122,156),(123,155),(124,154),(125,153),(126,152),(127,151),(128,150),(129,149),(130,148),(131,147),(132,146),(133,145),(134,144),(135,143),(136,142),(137,141),(138,140),(158,160)]])
59 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 20A | ··· | 20H | 20I | ··· | 20P | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 20 | 20 | 40 | 40 | 2 | 2 | 2 | 2 | 4 | 20 | 20 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
59 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D8 | C4○D4 | D10 | D10 | D20 | D40 | C8⋊C22 | D4×D5 | Q8⋊2D5 | C8⋊D10 |
kernel | C4⋊D40 | D20⋊5C4 | C5×C4⋊C8 | C4×D20 | C20⋊4D4 | C2×D40 | D20 | C2×C20 | C4⋊C8 | C20 | C20 | C42 | C2×C8 | C2×C4 | C4 | C10 | C4 | C4 | C2 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 8 | 16 | 1 | 2 | 2 | 4 |
Matrix representation of C4⋊D40 ►in GL4(𝔽41) generated by
0 | 32 | 0 | 0 |
32 | 0 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
0 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 8 | 35 |
0 | 0 | 11 | 38 |
40 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 35 | 7 |
0 | 0 | 36 | 6 |
G:=sub<GL(4,GF(41))| [0,32,0,0,32,0,0,0,0,0,40,0,0,0,0,40],[0,40,0,0,1,0,0,0,0,0,8,11,0,0,35,38],[40,0,0,0,0,1,0,0,0,0,35,36,0,0,7,6] >;
C4⋊D40 in GAP, Magma, Sage, TeX
C_4\rtimes D_{40}
% in TeX
G:=Group("C4:D40");
// GroupNames label
G:=SmallGroup(320,470);
// by ID
G=gap.SmallGroup(320,470);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,254,219,226,1123,136,12550]);
// Polycyclic
G:=Group<a,b,c|a^4=b^40=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations