metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C80⋊2C4, C16⋊5F5, D5.1D16, D10.8D8, D5.1Q32, Dic5.5Q16, C5⋊(C16⋊3C4), C5⋊2C16⋊13C4, C4.3(C4⋊F5), C8.20(C2×F5), C5⋊2C8.6Q8, C40.20(C2×C4), (D5×C16).2C2, (C4×D5).74D4, D5.D8.3C2, C20.10(C4⋊C4), C2.4(D5.D8), C10.1(C2.D8), (C8×D5).49C22, SmallGroup(320,187)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C80⋊2C4
G = < a,b | a80=b4=1, bab-1=a63 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 16)(2 63 50 79)(3 30 19 62)(4 77 68 45)(5 44 37 28)(6 11)(7 58 55 74)(8 25 24 57)(9 72 73 40)(10 39 42 23)(12 53 60 69)(13 20 29 52)(14 67 78 35)(15 34 47 18)(17 48 65 64)(21 76)(22 43 70 59)(26 71)(27 38 75 54)(31 66)(32 33 80 49)(36 61)(41 56)(46 51)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,16)(2,63,50,79)(3,30,19,62)(4,77,68,45)(5,44,37,28)(6,11)(7,58,55,74)(8,25,24,57)(9,72,73,40)(10,39,42,23)(12,53,60,69)(13,20,29,52)(14,67,78,35)(15,34,47,18)(17,48,65,64)(21,76)(22,43,70,59)(26,71)(27,38,75,54)(31,66)(32,33,80,49)(36,61)(41,56)(46,51)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,16)(2,63,50,79)(3,30,19,62)(4,77,68,45)(5,44,37,28)(6,11)(7,58,55,74)(8,25,24,57)(9,72,73,40)(10,39,42,23)(12,53,60,69)(13,20,29,52)(14,67,78,35)(15,34,47,18)(17,48,65,64)(21,76)(22,43,70,59)(26,71)(27,38,75,54)(31,66)(32,33,80,49)(36,61)(41,56)(46,51) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,16),(2,63,50,79),(3,30,19,62),(4,77,68,45),(5,44,37,28),(6,11),(7,58,55,74),(8,25,24,57),(9,72,73,40),(10,39,42,23),(12,53,60,69),(13,20,29,52),(14,67,78,35),(15,34,47,18),(17,48,65,64),(21,76),(22,43,70,59),(26,71),(27,38,75,54),(31,66),(32,33,80,49),(36,61),(41,56),(46,51)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 5 | 8A | 8B | 8C | 8D | 10 | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | 20A | 20B | 40A | 40B | 40C | 40D | 80A | ··· | 80H |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | 8 | 8 | 8 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 40 | 40 | 40 | 40 | 80 | ··· | 80 |
size | 1 | 1 | 5 | 5 | 2 | 10 | 40 | 40 | 40 | 40 | 4 | 2 | 2 | 10 | 10 | 4 | 2 | 2 | 2 | 2 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | - | + | - | + | + | - | + | + | |||||
image | C1 | C2 | C2 | C4 | C4 | Q8 | D4 | Q16 | D8 | D16 | Q32 | F5 | C2×F5 | C4⋊F5 | D5.D8 | C80⋊2C4 |
kernel | C80⋊2C4 | D5×C16 | D5.D8 | C5⋊2C16 | C80 | C5⋊2C8 | C4×D5 | Dic5 | D10 | D5 | D5 | C16 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 4 | 8 |
Matrix representation of C80⋊2C4 ►in GL4(𝔽241) generated by
195 | 62 | 195 | 0 |
0 | 195 | 62 | 195 |
46 | 46 | 0 | 108 |
133 | 179 | 179 | 133 |
0 | 195 | 62 | 195 |
108 | 0 | 46 | 46 |
46 | 46 | 0 | 108 |
195 | 62 | 195 | 0 |
G:=sub<GL(4,GF(241))| [195,0,46,133,62,195,46,179,195,62,0,179,0,195,108,133],[0,108,46,195,195,0,46,62,62,46,0,195,195,46,108,0] >;
C80⋊2C4 in GAP, Magma, Sage, TeX
C_{80}\rtimes_2C_4
% in TeX
G:=Group("C80:2C4");
// GroupNames label
G:=SmallGroup(320,187);
// by ID
G=gap.SmallGroup(320,187);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,176,675,192,1684,102,6278,3156]);
// Polycyclic
G:=Group<a,b|a^80=b^4=1,b*a*b^-1=a^63>;
// generators/relations
Export