Copied to
clipboard

G = D2013D4order 320 = 26·5

1st semidirect product of D20 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2013D4, C222D40, C23.37D20, (C2×C10)⋊1D8, (C2×C8)⋊1D10, (C2×D40)⋊2C2, C22⋊C83D5, C2.7(C2×D40), C10.5(C2×D8), C207D41C2, C51(C22⋊D8), (C2×C40)⋊1C22, (C2×C4).32D20, (C2×C20).43D4, C4.120(D4×D5), D205C44C2, C10.8C22≀C2, C20.332(C2×D4), (C2×D20)⋊1C22, (C22×D20)⋊2C2, C4⋊Dic52C22, C10.9(C8⋊C22), (C22×C4).82D10, (C22×C10).52D4, C2.12(C8⋊D10), (C2×C20).742C23, C22.105(C2×D20), C2.11(C22⋊D20), (C22×C20).51C22, (C5×C22⋊C8)⋊5C2, (C2×C10).125(C2×D4), (C2×C4).687(C22×D5), SmallGroup(320,359)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D2013D4
C1C5C10C20C2×C20C2×D20C22×D20 — D2013D4
C5C10C2×C20 — D2013D4
C1C22C22×C4C22⋊C8

Generators and relations for D2013D4
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=cac-1=a-1, ad=da, cbc-1=a3b, bd=db, dcd=c-1 >

Subgroups: 1214 in 198 conjugacy classes, 47 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C24, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, C4⋊D4, C2×D8, C22×D4, C40, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C22⋊D8, D40, C4⋊Dic5, D10⋊C4, C2×C40, C2×D20, C2×D20, C2×D20, C2×C5⋊D4, C22×C20, C23×D5, D205C4, C5×C22⋊C8, C2×D40, C207D4, C22×D20, D2013D4
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C22≀C2, C2×D8, C8⋊C22, D20, C22×D5, C22⋊D8, D40, C2×D20, D4×D5, C22⋊D20, C2×D40, C8⋊D10, D2013D4

Smallest permutation representation of D2013D4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 31)(22 30)(23 29)(24 28)(25 27)(32 40)(33 39)(34 38)(35 37)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(53 60)(54 59)(55 58)(56 57)(61 73)(62 72)(63 71)(64 70)(65 69)(66 68)(74 80)(75 79)(76 78)
(1 65 57 34)(2 64 58 33)(3 63 59 32)(4 62 60 31)(5 61 41 30)(6 80 42 29)(7 79 43 28)(8 78 44 27)(9 77 45 26)(10 76 46 25)(11 75 47 24)(12 74 48 23)(13 73 49 22)(14 72 50 21)(15 71 51 40)(16 70 52 39)(17 69 53 38)(18 68 54 37)(19 67 55 36)(20 66 56 35)
(1 47)(2 48)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 57)(12 58)(13 59)(14 60)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,31)(22,30)(23,29)(24,28)(25,27)(32,40)(33,39)(34,38)(35,37)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78), (1,65,57,34)(2,64,58,33)(3,63,59,32)(4,62,60,31)(5,61,41,30)(6,80,42,29)(7,79,43,28)(8,78,44,27)(9,77,45,26)(10,76,46,25)(11,75,47,24)(12,74,48,23)(13,73,49,22)(14,72,50,21)(15,71,51,40)(16,70,52,39)(17,69,53,38)(18,68,54,37)(19,67,55,36)(20,66,56,35), (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,31)(22,30)(23,29)(24,28)(25,27)(32,40)(33,39)(34,38)(35,37)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78), (1,65,57,34)(2,64,58,33)(3,63,59,32)(4,62,60,31)(5,61,41,30)(6,80,42,29)(7,79,43,28)(8,78,44,27)(9,77,45,26)(10,76,46,25)(11,75,47,24)(12,74,48,23)(13,73,49,22)(14,72,50,21)(15,71,51,40)(16,70,52,39)(17,69,53,38)(18,68,54,37)(19,67,55,36)(20,66,56,35), (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,31),(22,30),(23,29),(24,28),(25,27),(32,40),(33,39),(34,38),(35,37),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(53,60),(54,59),(55,58),(56,57),(61,73),(62,72),(63,71),(64,70),(65,69),(66,68),(74,80),(75,79),(76,78)], [(1,65,57,34),(2,64,58,33),(3,63,59,32),(4,62,60,31),(5,61,41,30),(6,80,42,29),(7,79,43,28),(8,78,44,27),(9,77,45,26),(10,76,46,25),(11,75,47,24),(12,74,48,23),(13,73,49,22),(14,72,50,21),(15,71,51,40),(16,70,52,39),(17,69,53,38),(18,68,54,37),(19,67,55,36),(20,66,56,35)], [(1,47),(2,48),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,57),(12,58),(13,59),(14,60),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80)]])

59 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222222222444455888810···101010101020···202020202040···40
size1111222020202040224402244442···244442···244444···4

59 irreducible representations

dim1111112222222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D5D8D10D10D20D20D40C8⋊C22D4×D5C8⋊D10
kernelD2013D4D205C4C5×C22⋊C8C2×D40C207D4C22×D20D20C2×C20C22×C10C22⋊C8C2×C10C2×C8C22×C4C2×C4C23C22C10C4C2
# reps12121141124424416144

Matrix representation of D2013D4 in GL4(𝔽41) generated by

163000
27200
00400
00040
,
393000
4200
00400
00141
,
183900
182300
00284
001913
,
40000
04000
00400
00141
G:=sub<GL(4,GF(41))| [16,27,0,0,30,2,0,0,0,0,40,0,0,0,0,40],[39,4,0,0,30,2,0,0,0,0,40,14,0,0,0,1],[18,18,0,0,39,23,0,0,0,0,28,19,0,0,4,13],[40,0,0,0,0,40,0,0,0,0,40,14,0,0,0,1] >;

D2013D4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_{13}D_4
% in TeX

G:=Group("D20:13D4");
// GroupNames label

G:=SmallGroup(320,359);
// by ID

G=gap.SmallGroup(320,359);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,219,226,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^3*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽