Copied to
clipboard

G = D2014D4order 320 = 26·5

2nd semidirect product of D20 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2014D4, Dic1013D4, C23.12D20, (C2×D40)⋊3C2, C22⋊C86D5, (C2×C8).3D10, C51(D4⋊D4), C4.122(D4×D5), D205C49C2, C207D416C2, C10.9(C4○D8), (C2×C20).241D4, (C2×C4).119D20, C20.334(C2×D4), C10.10C22≀C2, C20.44D46C2, (C22×C10).54D4, (C22×C4).84D10, C2.13(C8⋊D10), C10.10(C8⋊C22), (C2×C20).744C23, (C2×C40).119C22, C22.107(C2×D20), C4⋊Dic5.13C22, C2.13(C22⋊D20), C2.11(D407C2), (C2×D20).199C22, (C22×C20).97C22, (C2×Dic10).217C22, (C2×C4○D20)⋊1C2, (C5×C22⋊C8)⋊8C2, (C2×C40⋊C2)⋊11C2, (C2×C10).127(C2×D4), (C2×C4).689(C22×D5), SmallGroup(320,361)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D2014D4
C1C5C10C20C2×C20C2×D20C2×C4○D20 — D2014D4
C5C10C2×C20 — D2014D4
C1C22C22×C4C22⋊C8

Generators and relations for D2014D4
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=cac-1=a-1, ad=da, cbc-1=a13b, dbd=a10b, dcd=c-1 >

Subgroups: 830 in 162 conjugacy classes, 43 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, C40, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, D4⋊D4, C40⋊C2, D40, C4⋊Dic5, D10⋊C4, C2×C40, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C22×C20, C20.44D4, D205C4, C5×C22⋊C8, C2×C40⋊C2, C2×D40, C207D4, C2×C4○D20, D2014D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, C4○D8, C8⋊C22, D20, C22×D5, D4⋊D4, C2×D20, D4×D5, C22⋊D20, D407C2, C8⋊D10, D2014D4

Smallest permutation representation of D2014D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 153)(2 152)(3 151)(4 150)(5 149)(6 148)(7 147)(8 146)(9 145)(10 144)(11 143)(12 142)(13 141)(14 160)(15 159)(16 158)(17 157)(18 156)(19 155)(20 154)(21 64)(22 63)(23 62)(24 61)(25 80)(26 79)(27 78)(28 77)(29 76)(30 75)(31 74)(32 73)(33 72)(34 71)(35 70)(36 69)(37 68)(38 67)(39 66)(40 65)(41 106)(42 105)(43 104)(44 103)(45 102)(46 101)(47 120)(48 119)(49 118)(50 117)(51 116)(52 115)(53 114)(54 113)(55 112)(56 111)(57 110)(58 109)(59 108)(60 107)(81 128)(82 127)(83 126)(84 125)(85 124)(86 123)(87 122)(88 121)(89 140)(90 139)(91 138)(92 137)(93 136)(94 135)(95 134)(96 133)(97 132)(98 131)(99 130)(100 129)
(1 71 92 50)(2 70 93 49)(3 69 94 48)(4 68 95 47)(5 67 96 46)(6 66 97 45)(7 65 98 44)(8 64 99 43)(9 63 100 42)(10 62 81 41)(11 61 82 60)(12 80 83 59)(13 79 84 58)(14 78 85 57)(15 77 86 56)(16 76 87 55)(17 75 88 54)(18 74 89 53)(19 73 90 52)(20 72 91 51)(21 137 104 153)(22 136 105 152)(23 135 106 151)(24 134 107 150)(25 133 108 149)(26 132 109 148)(27 131 110 147)(28 130 111 146)(29 129 112 145)(30 128 113 144)(31 127 114 143)(32 126 115 142)(33 125 116 141)(34 124 117 160)(35 123 118 159)(36 122 119 158)(37 121 120 157)(38 140 101 156)(39 139 102 155)(40 138 103 154)
(1 50)(2 51)(3 52)(4 53)(5 54)(6 55)(7 56)(8 57)(9 58)(10 59)(11 60)(12 41)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 134)(22 135)(23 136)(24 137)(25 138)(26 139)(27 140)(28 121)(29 122)(30 123)(31 124)(32 125)(33 126)(34 127)(35 128)(36 129)(37 130)(38 131)(39 132)(40 133)(61 82)(62 83)(63 84)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 91)(71 92)(72 93)(73 94)(74 95)(75 96)(76 97)(77 98)(78 99)(79 100)(80 81)(101 147)(102 148)(103 149)(104 150)(105 151)(106 152)(107 153)(108 154)(109 155)(110 156)(111 157)(112 158)(113 159)(114 160)(115 141)(116 142)(117 143)(118 144)(119 145)(120 146)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,153)(2,152)(3,151)(4,150)(5,149)(6,148)(7,147)(8,146)(9,145)(10,144)(11,143)(12,142)(13,141)(14,160)(15,159)(16,158)(17,157)(18,156)(19,155)(20,154)(21,64)(22,63)(23,62)(24,61)(25,80)(26,79)(27,78)(28,77)(29,76)(30,75)(31,74)(32,73)(33,72)(34,71)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)(41,106)(42,105)(43,104)(44,103)(45,102)(46,101)(47,120)(48,119)(49,118)(50,117)(51,116)(52,115)(53,114)(54,113)(55,112)(56,111)(57,110)(58,109)(59,108)(60,107)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,140)(90,139)(91,138)(92,137)(93,136)(94,135)(95,134)(96,133)(97,132)(98,131)(99,130)(100,129), (1,71,92,50)(2,70,93,49)(3,69,94,48)(4,68,95,47)(5,67,96,46)(6,66,97,45)(7,65,98,44)(8,64,99,43)(9,63,100,42)(10,62,81,41)(11,61,82,60)(12,80,83,59)(13,79,84,58)(14,78,85,57)(15,77,86,56)(16,76,87,55)(17,75,88,54)(18,74,89,53)(19,73,90,52)(20,72,91,51)(21,137,104,153)(22,136,105,152)(23,135,106,151)(24,134,107,150)(25,133,108,149)(26,132,109,148)(27,131,110,147)(28,130,111,146)(29,129,112,145)(30,128,113,144)(31,127,114,143)(32,126,115,142)(33,125,116,141)(34,124,117,160)(35,123,118,159)(36,122,119,158)(37,121,120,157)(38,140,101,156)(39,139,102,155)(40,138,103,154), (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,60)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,134)(22,135)(23,136)(24,137)(25,138)(26,139)(27,140)(28,121)(29,122)(30,123)(31,124)(32,125)(33,126)(34,127)(35,128)(36,129)(37,130)(38,131)(39,132)(40,133)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,92)(72,93)(73,94)(74,95)(75,96)(76,97)(77,98)(78,99)(79,100)(80,81)(101,147)(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(113,159)(114,160)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,153)(2,152)(3,151)(4,150)(5,149)(6,148)(7,147)(8,146)(9,145)(10,144)(11,143)(12,142)(13,141)(14,160)(15,159)(16,158)(17,157)(18,156)(19,155)(20,154)(21,64)(22,63)(23,62)(24,61)(25,80)(26,79)(27,78)(28,77)(29,76)(30,75)(31,74)(32,73)(33,72)(34,71)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)(41,106)(42,105)(43,104)(44,103)(45,102)(46,101)(47,120)(48,119)(49,118)(50,117)(51,116)(52,115)(53,114)(54,113)(55,112)(56,111)(57,110)(58,109)(59,108)(60,107)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,140)(90,139)(91,138)(92,137)(93,136)(94,135)(95,134)(96,133)(97,132)(98,131)(99,130)(100,129), (1,71,92,50)(2,70,93,49)(3,69,94,48)(4,68,95,47)(5,67,96,46)(6,66,97,45)(7,65,98,44)(8,64,99,43)(9,63,100,42)(10,62,81,41)(11,61,82,60)(12,80,83,59)(13,79,84,58)(14,78,85,57)(15,77,86,56)(16,76,87,55)(17,75,88,54)(18,74,89,53)(19,73,90,52)(20,72,91,51)(21,137,104,153)(22,136,105,152)(23,135,106,151)(24,134,107,150)(25,133,108,149)(26,132,109,148)(27,131,110,147)(28,130,111,146)(29,129,112,145)(30,128,113,144)(31,127,114,143)(32,126,115,142)(33,125,116,141)(34,124,117,160)(35,123,118,159)(36,122,119,158)(37,121,120,157)(38,140,101,156)(39,139,102,155)(40,138,103,154), (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,60)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,134)(22,135)(23,136)(24,137)(25,138)(26,139)(27,140)(28,121)(29,122)(30,123)(31,124)(32,125)(33,126)(34,127)(35,128)(36,129)(37,130)(38,131)(39,132)(40,133)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,92)(72,93)(73,94)(74,95)(75,96)(76,97)(77,98)(78,99)(79,100)(80,81)(101,147)(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(113,159)(114,160)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,153),(2,152),(3,151),(4,150),(5,149),(6,148),(7,147),(8,146),(9,145),(10,144),(11,143),(12,142),(13,141),(14,160),(15,159),(16,158),(17,157),(18,156),(19,155),(20,154),(21,64),(22,63),(23,62),(24,61),(25,80),(26,79),(27,78),(28,77),(29,76),(30,75),(31,74),(32,73),(33,72),(34,71),(35,70),(36,69),(37,68),(38,67),(39,66),(40,65),(41,106),(42,105),(43,104),(44,103),(45,102),(46,101),(47,120),(48,119),(49,118),(50,117),(51,116),(52,115),(53,114),(54,113),(55,112),(56,111),(57,110),(58,109),(59,108),(60,107),(81,128),(82,127),(83,126),(84,125),(85,124),(86,123),(87,122),(88,121),(89,140),(90,139),(91,138),(92,137),(93,136),(94,135),(95,134),(96,133),(97,132),(98,131),(99,130),(100,129)], [(1,71,92,50),(2,70,93,49),(3,69,94,48),(4,68,95,47),(5,67,96,46),(6,66,97,45),(7,65,98,44),(8,64,99,43),(9,63,100,42),(10,62,81,41),(11,61,82,60),(12,80,83,59),(13,79,84,58),(14,78,85,57),(15,77,86,56),(16,76,87,55),(17,75,88,54),(18,74,89,53),(19,73,90,52),(20,72,91,51),(21,137,104,153),(22,136,105,152),(23,135,106,151),(24,134,107,150),(25,133,108,149),(26,132,109,148),(27,131,110,147),(28,130,111,146),(29,129,112,145),(30,128,113,144),(31,127,114,143),(32,126,115,142),(33,125,116,141),(34,124,117,160),(35,123,118,159),(36,122,119,158),(37,121,120,157),(38,140,101,156),(39,139,102,155),(40,138,103,154)], [(1,50),(2,51),(3,52),(4,53),(5,54),(6,55),(7,56),(8,57),(9,58),(10,59),(11,60),(12,41),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,134),(22,135),(23,136),(24,137),(25,138),(26,139),(27,140),(28,121),(29,122),(30,123),(31,124),(32,125),(33,126),(34,127),(35,128),(36,129),(37,130),(38,131),(39,132),(40,133),(61,82),(62,83),(63,84),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,91),(71,92),(72,93),(73,94),(74,95),(75,96),(76,97),(77,98),(78,99),(79,100),(80,81),(101,147),(102,148),(103,149),(104,150),(105,151),(106,152),(107,153),(108,154),(109,155),(110,156),(111,157),(112,158),(113,159),(114,160),(115,141),(116,142),(117,143),(118,144),(119,145),(120,146)]])

59 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222222444444455888810···101010101020···202020202040···40
size1111420204022222020402244442···244442···244444···4

59 irreducible representations

dim1111111122222222222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D4D5D10D10C4○D8D20D20D407C2C8⋊C22D4×D5C8⋊D10
kernelD2014D4C20.44D4D205C4C5×C22⋊C8C2×C40⋊C2C2×D40C207D4C2×C4○D20Dic10D20C2×C20C22×C10C22⋊C8C2×C8C22×C4C10C2×C4C23C2C10C4C2
# reps11111111221124244416144

Matrix representation of D2014D4 in GL6(𝔽41)

010000
4000000
0004000
0013500
000010
000001
,
29290000
29120000
00283900
0021300
000010
000001
,
090000
900000
0040000
0035100
0000224
00001219
,
090000
3200000
001000
000100
0000224
00003319

G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,35,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[29,29,0,0,0,0,29,12,0,0,0,0,0,0,28,2,0,0,0,0,39,13,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,9,0,0,0,0,9,0,0,0,0,0,0,0,40,35,0,0,0,0,0,1,0,0,0,0,0,0,22,12,0,0,0,0,4,19],[0,32,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,22,33,0,0,0,0,4,19] >;

D2014D4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_{14}D_4
% in TeX

G:=Group("D20:14D4");
// GroupNames label

G:=SmallGroup(320,361);
// by ID

G=gap.SmallGroup(320,361);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,219,226,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^13*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽