Copied to
clipboard

G = D4.2Dic10order 320 = 26·5

2nd non-split extension by D4 of Dic10 acting via Dic10/Dic5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.2Dic10, C4⋊C4.7D10, C405C47C2, (C2×C8).7D10, C52(D4.Q8), (C5×D4).2Q8, C20.4(C2×Q8), D4⋊C4.3D5, (C2×C40).7C22, C20.Q83C2, C4.Dic103C2, C20.8Q85C2, (D4×Dic5).6C2, C4.4(C2×Dic10), (C2×D4).129D10, C10.21(C4○D8), C2.6(D83D5), C2.9(D40⋊C2), D4⋊Dic5.5C2, C22.168(D4×D5), C20.148(C4○D4), C4.77(D42D5), C10.54(C8⋊C22), (C2×C20).206C23, (C2×Dic5).194D4, (D4×C10).27C22, C10.10(C22⋊Q8), C4⋊Dic5.65C22, (C4×Dic5).16C22, C2.15(Dic5.14D4), (C5×D4⋊C4).3C2, (C2×C10).219(C2×D4), (C5×C4⋊C4).11C22, (C2×C52C8).12C22, (C2×C4).313(C22×D5), SmallGroup(320,393)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D4.2Dic10
C1C5C10C2×C10C2×C20C4×Dic5D4×Dic5 — D4.2Dic10
C5C10C2×C20 — D4.2Dic10
C1C22C2×C4D4⋊C4

Generators and relations for D4.2Dic10
 G = < a,b,c,d | a4=b2=c20=1, d2=a2c10, bab=cac-1=a-1, ad=da, cbc-1=a-1b, bd=db, dcd-1=c-1 >

Subgroups: 374 in 102 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, Dic5, C20, C20, C2×C10, C2×C10, D4⋊C4, D4⋊C4, C4⋊C8, C4.Q8, C2.D8, C4×D4, C42.C2, C52C8, C40, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C22×C10, D4.Q8, C2×C52C8, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, C23.D5, C5×C4⋊C4, C2×C40, C22×Dic5, D4×C10, C20.Q8, C20.8Q8, C405C4, D4⋊Dic5, C5×D4⋊C4, C4.Dic10, D4×Dic5, D4.2Dic10
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22⋊Q8, C4○D8, C8⋊C22, Dic10, C22×D5, D4.Q8, C2×Dic10, D4×D5, D42D5, Dic5.14D4, D83D5, D40⋊C2, D4.2Dic10

Smallest permutation representation of D4.2Dic10
On 160 points
Generators in S160
(1 112 121 149)(2 150 122 113)(3 114 123 151)(4 152 124 115)(5 116 125 153)(6 154 126 117)(7 118 127 155)(8 156 128 119)(9 120 129 157)(10 158 130 101)(11 102 131 159)(12 160 132 103)(13 104 133 141)(14 142 134 105)(15 106 135 143)(16 144 136 107)(17 108 137 145)(18 146 138 109)(19 110 139 147)(20 148 140 111)(21 69 94 53)(22 54 95 70)(23 71 96 55)(24 56 97 72)(25 73 98 57)(26 58 99 74)(27 75 100 59)(28 60 81 76)(29 77 82 41)(30 42 83 78)(31 79 84 43)(32 44 85 80)(33 61 86 45)(34 46 87 62)(35 63 88 47)(36 48 89 64)(37 65 90 49)(38 50 91 66)(39 67 92 51)(40 52 93 68)
(1 102)(2 132)(3 104)(4 134)(5 106)(6 136)(7 108)(8 138)(9 110)(10 140)(11 112)(12 122)(13 114)(14 124)(15 116)(16 126)(17 118)(18 128)(19 120)(20 130)(21 43)(22 32)(23 45)(24 34)(25 47)(26 36)(27 49)(28 38)(29 51)(30 40)(31 53)(33 55)(35 57)(37 59)(39 41)(42 68)(44 70)(46 72)(48 74)(50 76)(52 78)(54 80)(56 62)(58 64)(60 66)(61 96)(63 98)(65 100)(67 82)(69 84)(71 86)(73 88)(75 90)(77 92)(79 94)(81 91)(83 93)(85 95)(87 97)(89 99)(101 111)(103 113)(105 115)(107 117)(109 119)(121 159)(123 141)(125 143)(127 145)(129 147)(131 149)(133 151)(135 153)(137 155)(139 157)(142 152)(144 154)(146 156)(148 158)(150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 45 131 71)(2 44 132 70)(3 43 133 69)(4 42 134 68)(5 41 135 67)(6 60 136 66)(7 59 137 65)(8 58 138 64)(9 57 139 63)(10 56 140 62)(11 55 121 61)(12 54 122 80)(13 53 123 79)(14 52 124 78)(15 51 125 77)(16 50 126 76)(17 49 127 75)(18 48 128 74)(19 47 129 73)(20 46 130 72)(21 151 84 104)(22 150 85 103)(23 149 86 102)(24 148 87 101)(25 147 88 120)(26 146 89 119)(27 145 90 118)(28 144 91 117)(29 143 92 116)(30 142 93 115)(31 141 94 114)(32 160 95 113)(33 159 96 112)(34 158 97 111)(35 157 98 110)(36 156 99 109)(37 155 100 108)(38 154 81 107)(39 153 82 106)(40 152 83 105)

G:=sub<Sym(160)| (1,112,121,149)(2,150,122,113)(3,114,123,151)(4,152,124,115)(5,116,125,153)(6,154,126,117)(7,118,127,155)(8,156,128,119)(9,120,129,157)(10,158,130,101)(11,102,131,159)(12,160,132,103)(13,104,133,141)(14,142,134,105)(15,106,135,143)(16,144,136,107)(17,108,137,145)(18,146,138,109)(19,110,139,147)(20,148,140,111)(21,69,94,53)(22,54,95,70)(23,71,96,55)(24,56,97,72)(25,73,98,57)(26,58,99,74)(27,75,100,59)(28,60,81,76)(29,77,82,41)(30,42,83,78)(31,79,84,43)(32,44,85,80)(33,61,86,45)(34,46,87,62)(35,63,88,47)(36,48,89,64)(37,65,90,49)(38,50,91,66)(39,67,92,51)(40,52,93,68), (1,102)(2,132)(3,104)(4,134)(5,106)(6,136)(7,108)(8,138)(9,110)(10,140)(11,112)(12,122)(13,114)(14,124)(15,116)(16,126)(17,118)(18,128)(19,120)(20,130)(21,43)(22,32)(23,45)(24,34)(25,47)(26,36)(27,49)(28,38)(29,51)(30,40)(31,53)(33,55)(35,57)(37,59)(39,41)(42,68)(44,70)(46,72)(48,74)(50,76)(52,78)(54,80)(56,62)(58,64)(60,66)(61,96)(63,98)(65,100)(67,82)(69,84)(71,86)(73,88)(75,90)(77,92)(79,94)(81,91)(83,93)(85,95)(87,97)(89,99)(101,111)(103,113)(105,115)(107,117)(109,119)(121,159)(123,141)(125,143)(127,145)(129,147)(131,149)(133,151)(135,153)(137,155)(139,157)(142,152)(144,154)(146,156)(148,158)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,45,131,71)(2,44,132,70)(3,43,133,69)(4,42,134,68)(5,41,135,67)(6,60,136,66)(7,59,137,65)(8,58,138,64)(9,57,139,63)(10,56,140,62)(11,55,121,61)(12,54,122,80)(13,53,123,79)(14,52,124,78)(15,51,125,77)(16,50,126,76)(17,49,127,75)(18,48,128,74)(19,47,129,73)(20,46,130,72)(21,151,84,104)(22,150,85,103)(23,149,86,102)(24,148,87,101)(25,147,88,120)(26,146,89,119)(27,145,90,118)(28,144,91,117)(29,143,92,116)(30,142,93,115)(31,141,94,114)(32,160,95,113)(33,159,96,112)(34,158,97,111)(35,157,98,110)(36,156,99,109)(37,155,100,108)(38,154,81,107)(39,153,82,106)(40,152,83,105)>;

G:=Group( (1,112,121,149)(2,150,122,113)(3,114,123,151)(4,152,124,115)(5,116,125,153)(6,154,126,117)(7,118,127,155)(8,156,128,119)(9,120,129,157)(10,158,130,101)(11,102,131,159)(12,160,132,103)(13,104,133,141)(14,142,134,105)(15,106,135,143)(16,144,136,107)(17,108,137,145)(18,146,138,109)(19,110,139,147)(20,148,140,111)(21,69,94,53)(22,54,95,70)(23,71,96,55)(24,56,97,72)(25,73,98,57)(26,58,99,74)(27,75,100,59)(28,60,81,76)(29,77,82,41)(30,42,83,78)(31,79,84,43)(32,44,85,80)(33,61,86,45)(34,46,87,62)(35,63,88,47)(36,48,89,64)(37,65,90,49)(38,50,91,66)(39,67,92,51)(40,52,93,68), (1,102)(2,132)(3,104)(4,134)(5,106)(6,136)(7,108)(8,138)(9,110)(10,140)(11,112)(12,122)(13,114)(14,124)(15,116)(16,126)(17,118)(18,128)(19,120)(20,130)(21,43)(22,32)(23,45)(24,34)(25,47)(26,36)(27,49)(28,38)(29,51)(30,40)(31,53)(33,55)(35,57)(37,59)(39,41)(42,68)(44,70)(46,72)(48,74)(50,76)(52,78)(54,80)(56,62)(58,64)(60,66)(61,96)(63,98)(65,100)(67,82)(69,84)(71,86)(73,88)(75,90)(77,92)(79,94)(81,91)(83,93)(85,95)(87,97)(89,99)(101,111)(103,113)(105,115)(107,117)(109,119)(121,159)(123,141)(125,143)(127,145)(129,147)(131,149)(133,151)(135,153)(137,155)(139,157)(142,152)(144,154)(146,156)(148,158)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,45,131,71)(2,44,132,70)(3,43,133,69)(4,42,134,68)(5,41,135,67)(6,60,136,66)(7,59,137,65)(8,58,138,64)(9,57,139,63)(10,56,140,62)(11,55,121,61)(12,54,122,80)(13,53,123,79)(14,52,124,78)(15,51,125,77)(16,50,126,76)(17,49,127,75)(18,48,128,74)(19,47,129,73)(20,46,130,72)(21,151,84,104)(22,150,85,103)(23,149,86,102)(24,148,87,101)(25,147,88,120)(26,146,89,119)(27,145,90,118)(28,144,91,117)(29,143,92,116)(30,142,93,115)(31,141,94,114)(32,160,95,113)(33,159,96,112)(34,158,97,111)(35,157,98,110)(36,156,99,109)(37,155,100,108)(38,154,81,107)(39,153,82,106)(40,152,83,105) );

G=PermutationGroup([[(1,112,121,149),(2,150,122,113),(3,114,123,151),(4,152,124,115),(5,116,125,153),(6,154,126,117),(7,118,127,155),(8,156,128,119),(9,120,129,157),(10,158,130,101),(11,102,131,159),(12,160,132,103),(13,104,133,141),(14,142,134,105),(15,106,135,143),(16,144,136,107),(17,108,137,145),(18,146,138,109),(19,110,139,147),(20,148,140,111),(21,69,94,53),(22,54,95,70),(23,71,96,55),(24,56,97,72),(25,73,98,57),(26,58,99,74),(27,75,100,59),(28,60,81,76),(29,77,82,41),(30,42,83,78),(31,79,84,43),(32,44,85,80),(33,61,86,45),(34,46,87,62),(35,63,88,47),(36,48,89,64),(37,65,90,49),(38,50,91,66),(39,67,92,51),(40,52,93,68)], [(1,102),(2,132),(3,104),(4,134),(5,106),(6,136),(7,108),(8,138),(9,110),(10,140),(11,112),(12,122),(13,114),(14,124),(15,116),(16,126),(17,118),(18,128),(19,120),(20,130),(21,43),(22,32),(23,45),(24,34),(25,47),(26,36),(27,49),(28,38),(29,51),(30,40),(31,53),(33,55),(35,57),(37,59),(39,41),(42,68),(44,70),(46,72),(48,74),(50,76),(52,78),(54,80),(56,62),(58,64),(60,66),(61,96),(63,98),(65,100),(67,82),(69,84),(71,86),(73,88),(75,90),(77,92),(79,94),(81,91),(83,93),(85,95),(87,97),(89,99),(101,111),(103,113),(105,115),(107,117),(109,119),(121,159),(123,141),(125,143),(127,145),(129,147),(131,149),(133,151),(135,153),(137,155),(139,157),(142,152),(144,154),(146,156),(148,158),(150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,45,131,71),(2,44,132,70),(3,43,133,69),(4,42,134,68),(5,41,135,67),(6,60,136,66),(7,59,137,65),(8,58,138,64),(9,57,139,63),(10,56,140,62),(11,55,121,61),(12,54,122,80),(13,53,123,79),(14,52,124,78),(15,51,125,77),(16,50,126,76),(17,49,127,75),(18,48,128,74),(19,47,129,73),(20,46,130,72),(21,151,84,104),(22,150,85,103),(23,149,86,102),(24,148,87,101),(25,147,88,120),(26,146,89,119),(27,145,90,118),(28,144,91,117),(29,143,92,116),(30,142,93,115),(31,141,94,114),(32,160,95,113),(33,159,96,112),(34,158,97,111),(35,157,98,110),(36,156,99,109),(37,155,100,108),(38,154,81,107),(39,153,82,106),(40,152,83,105)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222244444444455888810···1010101010202020202020202040···40
size111144228101020202040224420202···28888444488884···4

47 irreducible representations

dim1111111122222222244444
type+++++++++-++++-+-+-+
imageC1C2C2C2C2C2C2C2D4Q8D5C4○D4D10D10D10C4○D8Dic10C8⋊C22D42D5D4×D5D83D5D40⋊C2
kernelD4.2Dic10C20.Q8C20.8Q8C405C4D4⋊Dic5C5×D4⋊C4C4.Dic10D4×Dic5C2×Dic5C5×D4D4⋊C4C20C4⋊C4C2×C8C2×D4C10D4C10C4C22C2C2
# reps1111111122222224812244

Matrix representation of D4.2Dic10 in GL6(𝔽41)

4000000
0400000
000100
0040000
000010
000001
,
100000
0400000
0004000
0040000
000010
000001
,
0370000
3100000
00121200
00122900
0000140
0000366
,
3200000
090000
0032000
0003200
00003540
0000356

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,31,0,0,0,0,37,0,0,0,0,0,0,0,12,12,0,0,0,0,12,29,0,0,0,0,0,0,1,36,0,0,0,0,40,6],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,35,35,0,0,0,0,40,6] >;

D4.2Dic10 in GAP, Magma, Sage, TeX

D_4._2{\rm Dic}_{10}
% in TeX

G:=Group("D4.2Dic10");
// GroupNames label

G:=SmallGroup(320,393);
// by ID

G=gap.SmallGroup(320,393);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,926,219,226,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=a^2*c^10,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽