metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Dic10.8D4, (C2×C8).8D10, C4.83(D4×D5), C4⋊C4.132D10, (C2×Dic20)⋊4C2, (C2×D4).21D10, D4⋊C4.4D5, C4.2(C4○D20), C20.5(C4○D4), C20.102(C2×D4), C10.Q16⋊2C2, (C2×C40).8C22, C20.8Q8⋊6C2, C5⋊1(Q8.D4), Dic5⋊3Q8⋊4C2, C10.22(C4○D8), C2.7(D8⋊3D5), (C2×Dic5).25D4, C22.169(D4×D5), C10.14(C4⋊D4), (C2×C20).207C23, C20.17D4.5C2, (D4×C10).28C22, C2.17(D10⋊D4), C2.10(SD16⋊D5), C10.27(C8.C22), (C4×Dic5).17C22, (C2×Dic10).57C22, (C2×D4.D5).3C2, (C5×D4⋊C4).4C2, (C2×C10).220(C2×D4), (C5×C4⋊C4).12C22, (C2×C5⋊2C8).13C22, (C2×C4).314(C22×D5), SmallGroup(320,394)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C22 — C2×C4 — D4⋊C4 |
Generators and relations for Dic10.D4
G = < a,b,c,d | a20=c4=1, b2=d2=a10, bab-1=dad-1=a-1, cac-1=a9, bc=cb, dbd-1=a15b, dcd-1=a10c-1 >
Subgroups: 422 in 112 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C2×D4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C4⋊C8, C4×Q8, C4.4D4, C2×SD16, C2×Q16, C5⋊2C8, C40, Dic10, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, Q8.D4, Dic20, C2×C5⋊2C8, C4×Dic5, C4×Dic5, C10.D4, D4.D5, C23.D5, C5×C4⋊C4, C2×C40, C2×Dic10, D4×C10, C10.Q16, C20.8Q8, C5×D4⋊C4, Dic5⋊3Q8, C2×Dic20, C2×D4.D5, C20.17D4, Dic10.D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C4○D8, C8.C22, C22×D5, Q8.D4, C4○D20, D4×D5, D10⋊D4, D8⋊3D5, SD16⋊D5, Dic10.D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 38 11 28)(2 37 12 27)(3 36 13 26)(4 35 14 25)(5 34 15 24)(6 33 16 23)(7 32 17 22)(8 31 18 21)(9 30 19 40)(10 29 20 39)(41 147 51 157)(42 146 52 156)(43 145 53 155)(44 144 54 154)(45 143 55 153)(46 142 56 152)(47 141 57 151)(48 160 58 150)(49 159 59 149)(50 158 60 148)(61 95 71 85)(62 94 72 84)(63 93 73 83)(64 92 74 82)(65 91 75 81)(66 90 76 100)(67 89 77 99)(68 88 78 98)(69 87 79 97)(70 86 80 96)(101 123 111 133)(102 122 112 132)(103 121 113 131)(104 140 114 130)(105 139 115 129)(106 138 116 128)(107 137 117 127)(108 136 118 126)(109 135 119 125)(110 134 120 124)
(1 147 90 117)(2 156 91 106)(3 145 92 115)(4 154 93 104)(5 143 94 113)(6 152 95 102)(7 141 96 111)(8 150 97 120)(9 159 98 109)(10 148 99 118)(11 157 100 107)(12 146 81 116)(13 155 82 105)(14 144 83 114)(15 153 84 103)(16 142 85 112)(17 151 86 101)(18 160 87 110)(19 149 88 119)(20 158 89 108)(21 58 79 134)(22 47 80 123)(23 56 61 132)(24 45 62 121)(25 54 63 130)(26 43 64 139)(27 52 65 128)(28 41 66 137)(29 50 67 126)(30 59 68 135)(31 48 69 124)(32 57 70 133)(33 46 71 122)(34 55 72 131)(35 44 73 140)(36 53 74 129)(37 42 75 138)(38 51 76 127)(39 60 77 136)(40 49 78 125)
(1 107 11 117)(2 106 12 116)(3 105 13 115)(4 104 14 114)(5 103 15 113)(6 102 16 112)(7 101 17 111)(8 120 18 110)(9 119 19 109)(10 118 20 108)(21 139 31 129)(22 138 32 128)(23 137 33 127)(24 136 34 126)(25 135 35 125)(26 134 36 124)(27 133 37 123)(28 132 38 122)(29 131 39 121)(30 130 40 140)(41 71 51 61)(42 70 52 80)(43 69 53 79)(44 68 54 78)(45 67 55 77)(46 66 56 76)(47 65 57 75)(48 64 58 74)(49 63 59 73)(50 62 60 72)(81 146 91 156)(82 145 92 155)(83 144 93 154)(84 143 94 153)(85 142 95 152)(86 141 96 151)(87 160 97 150)(88 159 98 149)(89 158 99 148)(90 157 100 147)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,38,11,28)(2,37,12,27)(3,36,13,26)(4,35,14,25)(5,34,15,24)(6,33,16,23)(7,32,17,22)(8,31,18,21)(9,30,19,40)(10,29,20,39)(41,147,51,157)(42,146,52,156)(43,145,53,155)(44,144,54,154)(45,143,55,153)(46,142,56,152)(47,141,57,151)(48,160,58,150)(49,159,59,149)(50,158,60,148)(61,95,71,85)(62,94,72,84)(63,93,73,83)(64,92,74,82)(65,91,75,81)(66,90,76,100)(67,89,77,99)(68,88,78,98)(69,87,79,97)(70,86,80,96)(101,123,111,133)(102,122,112,132)(103,121,113,131)(104,140,114,130)(105,139,115,129)(106,138,116,128)(107,137,117,127)(108,136,118,126)(109,135,119,125)(110,134,120,124), (1,147,90,117)(2,156,91,106)(3,145,92,115)(4,154,93,104)(5,143,94,113)(6,152,95,102)(7,141,96,111)(8,150,97,120)(9,159,98,109)(10,148,99,118)(11,157,100,107)(12,146,81,116)(13,155,82,105)(14,144,83,114)(15,153,84,103)(16,142,85,112)(17,151,86,101)(18,160,87,110)(19,149,88,119)(20,158,89,108)(21,58,79,134)(22,47,80,123)(23,56,61,132)(24,45,62,121)(25,54,63,130)(26,43,64,139)(27,52,65,128)(28,41,66,137)(29,50,67,126)(30,59,68,135)(31,48,69,124)(32,57,70,133)(33,46,71,122)(34,55,72,131)(35,44,73,140)(36,53,74,129)(37,42,75,138)(38,51,76,127)(39,60,77,136)(40,49,78,125), (1,107,11,117)(2,106,12,116)(3,105,13,115)(4,104,14,114)(5,103,15,113)(6,102,16,112)(7,101,17,111)(8,120,18,110)(9,119,19,109)(10,118,20,108)(21,139,31,129)(22,138,32,128)(23,137,33,127)(24,136,34,126)(25,135,35,125)(26,134,36,124)(27,133,37,123)(28,132,38,122)(29,131,39,121)(30,130,40,140)(41,71,51,61)(42,70,52,80)(43,69,53,79)(44,68,54,78)(45,67,55,77)(46,66,56,76)(47,65,57,75)(48,64,58,74)(49,63,59,73)(50,62,60,72)(81,146,91,156)(82,145,92,155)(83,144,93,154)(84,143,94,153)(85,142,95,152)(86,141,96,151)(87,160,97,150)(88,159,98,149)(89,158,99,148)(90,157,100,147)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,38,11,28)(2,37,12,27)(3,36,13,26)(4,35,14,25)(5,34,15,24)(6,33,16,23)(7,32,17,22)(8,31,18,21)(9,30,19,40)(10,29,20,39)(41,147,51,157)(42,146,52,156)(43,145,53,155)(44,144,54,154)(45,143,55,153)(46,142,56,152)(47,141,57,151)(48,160,58,150)(49,159,59,149)(50,158,60,148)(61,95,71,85)(62,94,72,84)(63,93,73,83)(64,92,74,82)(65,91,75,81)(66,90,76,100)(67,89,77,99)(68,88,78,98)(69,87,79,97)(70,86,80,96)(101,123,111,133)(102,122,112,132)(103,121,113,131)(104,140,114,130)(105,139,115,129)(106,138,116,128)(107,137,117,127)(108,136,118,126)(109,135,119,125)(110,134,120,124), (1,147,90,117)(2,156,91,106)(3,145,92,115)(4,154,93,104)(5,143,94,113)(6,152,95,102)(7,141,96,111)(8,150,97,120)(9,159,98,109)(10,148,99,118)(11,157,100,107)(12,146,81,116)(13,155,82,105)(14,144,83,114)(15,153,84,103)(16,142,85,112)(17,151,86,101)(18,160,87,110)(19,149,88,119)(20,158,89,108)(21,58,79,134)(22,47,80,123)(23,56,61,132)(24,45,62,121)(25,54,63,130)(26,43,64,139)(27,52,65,128)(28,41,66,137)(29,50,67,126)(30,59,68,135)(31,48,69,124)(32,57,70,133)(33,46,71,122)(34,55,72,131)(35,44,73,140)(36,53,74,129)(37,42,75,138)(38,51,76,127)(39,60,77,136)(40,49,78,125), (1,107,11,117)(2,106,12,116)(3,105,13,115)(4,104,14,114)(5,103,15,113)(6,102,16,112)(7,101,17,111)(8,120,18,110)(9,119,19,109)(10,118,20,108)(21,139,31,129)(22,138,32,128)(23,137,33,127)(24,136,34,126)(25,135,35,125)(26,134,36,124)(27,133,37,123)(28,132,38,122)(29,131,39,121)(30,130,40,140)(41,71,51,61)(42,70,52,80)(43,69,53,79)(44,68,54,78)(45,67,55,77)(46,66,56,76)(47,65,57,75)(48,64,58,74)(49,63,59,73)(50,62,60,72)(81,146,91,156)(82,145,92,155)(83,144,93,154)(84,143,94,153)(85,142,95,152)(86,141,96,151)(87,160,97,150)(88,159,98,149)(89,158,99,148)(90,157,100,147) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,38,11,28),(2,37,12,27),(3,36,13,26),(4,35,14,25),(5,34,15,24),(6,33,16,23),(7,32,17,22),(8,31,18,21),(9,30,19,40),(10,29,20,39),(41,147,51,157),(42,146,52,156),(43,145,53,155),(44,144,54,154),(45,143,55,153),(46,142,56,152),(47,141,57,151),(48,160,58,150),(49,159,59,149),(50,158,60,148),(61,95,71,85),(62,94,72,84),(63,93,73,83),(64,92,74,82),(65,91,75,81),(66,90,76,100),(67,89,77,99),(68,88,78,98),(69,87,79,97),(70,86,80,96),(101,123,111,133),(102,122,112,132),(103,121,113,131),(104,140,114,130),(105,139,115,129),(106,138,116,128),(107,137,117,127),(108,136,118,126),(109,135,119,125),(110,134,120,124)], [(1,147,90,117),(2,156,91,106),(3,145,92,115),(4,154,93,104),(5,143,94,113),(6,152,95,102),(7,141,96,111),(8,150,97,120),(9,159,98,109),(10,148,99,118),(11,157,100,107),(12,146,81,116),(13,155,82,105),(14,144,83,114),(15,153,84,103),(16,142,85,112),(17,151,86,101),(18,160,87,110),(19,149,88,119),(20,158,89,108),(21,58,79,134),(22,47,80,123),(23,56,61,132),(24,45,62,121),(25,54,63,130),(26,43,64,139),(27,52,65,128),(28,41,66,137),(29,50,67,126),(30,59,68,135),(31,48,69,124),(32,57,70,133),(33,46,71,122),(34,55,72,131),(35,44,73,140),(36,53,74,129),(37,42,75,138),(38,51,76,127),(39,60,77,136),(40,49,78,125)], [(1,107,11,117),(2,106,12,116),(3,105,13,115),(4,104,14,114),(5,103,15,113),(6,102,16,112),(7,101,17,111),(8,120,18,110),(9,119,19,109),(10,118,20,108),(21,139,31,129),(22,138,32,128),(23,137,33,127),(24,136,34,126),(25,135,35,125),(26,134,36,124),(27,133,37,123),(28,132,38,122),(29,131,39,121),(30,130,40,140),(41,71,51,61),(42,70,52,80),(43,69,53,79),(44,68,54,78),(45,67,55,77),(46,66,56,76),(47,65,57,75),(48,64,58,74),(49,63,59,73),(50,62,60,72),(81,146,91,156),(82,145,92,155),(83,144,93,154),(84,143,94,153),(85,142,95,152),(86,141,96,151),(87,160,97,150),(88,159,98,149),(89,158,99,148),(90,157,100,147)]])
47 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 40A | ··· | 40H |
| order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
| size | 1 | 1 | 1 | 1 | 8 | 2 | 2 | 4 | 4 | 10 | 10 | 20 | 20 | 20 | 40 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
47 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - | - | |||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | C4○D4 | D10 | D10 | D10 | C4○D8 | C4○D20 | C8.C22 | D4×D5 | D4×D5 | D8⋊3D5 | SD16⋊D5 |
| kernel | Dic10.D4 | C10.Q16 | C20.8Q8 | C5×D4⋊C4 | Dic5⋊3Q8 | C2×Dic20 | C2×D4.D5 | C20.17D4 | Dic10 | C2×Dic5 | D4⋊C4 | C20 | C4⋊C4 | C2×C8 | C2×D4 | C10 | C4 | C10 | C4 | C22 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 8 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of Dic10.D4 ►in GL4(𝔽41) generated by
| 23 | 0 | 0 | 0 |
| 33 | 25 | 0 | 0 |
| 0 | 0 | 40 | 39 |
| 0 | 0 | 1 | 1 |
| 10 | 18 | 0 | 0 |
| 15 | 31 | 0 | 0 |
| 0 | 0 | 30 | 30 |
| 0 | 0 | 26 | 11 |
| 33 | 2 | 0 | 0 |
| 29 | 8 | 0 | 0 |
| 0 | 0 | 32 | 0 |
| 0 | 0 | 0 | 32 |
| 33 | 2 | 0 | 0 |
| 30 | 8 | 0 | 0 |
| 0 | 0 | 32 | 23 |
| 0 | 0 | 0 | 9 |
G:=sub<GL(4,GF(41))| [23,33,0,0,0,25,0,0,0,0,40,1,0,0,39,1],[10,15,0,0,18,31,0,0,0,0,30,26,0,0,30,11],[33,29,0,0,2,8,0,0,0,0,32,0,0,0,0,32],[33,30,0,0,2,8,0,0,0,0,32,0,0,0,23,9] >;
Dic10.D4 in GAP, Magma, Sage, TeX
{\rm Dic}_{10}.D_4 % in TeX
G:=Group("Dic10.D4"); // GroupNames label
G:=SmallGroup(320,394);
// by ID
G=gap.SmallGroup(320,394);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,344,1094,135,570,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^20=c^4=1,b^2=d^2=a^10,b*a*b^-1=d*a*d^-1=a^-1,c*a*c^-1=a^9,b*c=c*b,d*b*d^-1=a^15*b,d*c*d^-1=a^10*c^-1>;
// generators/relations