Copied to
clipboard

G = D4.3Dic10order 320 = 26·5

The non-split extension by D4 of Dic10 acting via Dic10/C20=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.3Dic10, C42.46D10, (C4×D4).4D5, C56(D4.Q8), (C5×D4).3Q8, C203C819C2, (D4×C20).4C2, (C2×C20).59D4, C20.27(C2×Q8), C4⋊C4.240D10, (C2×D4).187D10, C20.47(C4○D4), C4.61(C4○D20), C10.87(C4○D8), C10.D831C2, (C4×C20).80C22, C20.Q831C2, C20.6Q811C2, C4.11(C2×Dic10), D4⋊Dic5.9C2, C10.86(C8⋊C22), (C2×C20).334C23, C10.63(C22⋊Q8), C2.8(D4.D10), (D4×C10).229C22, C4⋊Dic5.138C22, C2.10(D4.8D10), C2.14(C20.48D4), (C2×C10).465(C2×D4), (C2×C4).216(C5⋊D4), (C5×C4⋊C4).271C22, (C2×C52C8).91C22, (C2×C4).434(C22×D5), C22.148(C2×C5⋊D4), SmallGroup(320,636)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D4.3Dic10
C1C5C10C20C2×C20C4⋊Dic5C20.6Q8 — D4.3Dic10
C5C10C2×C20 — D4.3Dic10
C1C22C42C4×D4

Generators and relations for D4.3Dic10
 G = < a,b,c,d | a4=b2=c20=1, d2=a2c10, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c-1 >

Subgroups: 310 in 102 conjugacy classes, 43 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, Dic5, C20, C20, C2×C10, C2×C10, D4⋊C4, C4⋊C8, C4.Q8, C2.D8, C4×D4, C42.C2, C52C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C22×C10, D4.Q8, C2×C52C8, C10.D4, C4⋊Dic5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, C203C8, C10.D8, C20.Q8, D4⋊Dic5, C20.6Q8, D4×C20, D4.3Dic10
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22⋊Q8, C4○D8, C8⋊C22, Dic10, C5⋊D4, C22×D5, D4.Q8, C2×Dic10, C4○D20, C2×C5⋊D4, C20.48D4, D4.D10, D4.8D10, D4.3Dic10

Smallest permutation representation of D4.3Dic10
On 160 points
Generators in S160
(1 85 124 149)(2 86 125 150)(3 87 126 151)(4 88 127 152)(5 89 128 153)(6 90 129 154)(7 91 130 155)(8 92 131 156)(9 93 132 157)(10 94 133 158)(11 95 134 159)(12 96 135 160)(13 97 136 141)(14 98 137 142)(15 99 138 143)(16 100 139 144)(17 81 140 145)(18 82 121 146)(19 83 122 147)(20 84 123 148)(21 108 53 72)(22 109 54 73)(23 110 55 74)(24 111 56 75)(25 112 57 76)(26 113 58 77)(27 114 59 78)(28 115 60 79)(29 116 41 80)(30 117 42 61)(31 118 43 62)(32 119 44 63)(33 120 45 64)(34 101 46 65)(35 102 47 66)(36 103 48 67)(37 104 49 68)(38 105 50 69)(39 106 51 70)(40 107 52 71)
(1 95)(2 96)(3 97)(4 98)(5 99)(6 100)(7 81)(8 82)(9 83)(10 84)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 91)(18 92)(19 93)(20 94)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 107)(62 108)(63 109)(64 110)(65 111)(66 112)(67 113)(68 114)(69 115)(70 116)(71 117)(72 118)(73 119)(74 120)(75 101)(76 102)(77 103)(78 104)(79 105)(80 106)(121 156)(122 157)(123 158)(124 159)(125 160)(126 141)(127 142)(128 143)(129 144)(130 145)(131 146)(132 147)(133 148)(134 149)(135 150)(136 151)(137 152)(138 153)(139 154)(140 155)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 34 134 56)(2 45 135 23)(3 32 136 54)(4 43 137 21)(5 30 138 52)(6 41 139 39)(7 28 140 50)(8 59 121 37)(9 26 122 48)(10 57 123 35)(11 24 124 46)(12 55 125 33)(13 22 126 44)(14 53 127 31)(15 40 128 42)(16 51 129 29)(17 38 130 60)(18 49 131 27)(19 36 132 58)(20 47 133 25)(61 143 107 89)(62 98 108 152)(63 141 109 87)(64 96 110 150)(65 159 111 85)(66 94 112 148)(67 157 113 83)(68 92 114 146)(69 155 115 81)(70 90 116 144)(71 153 117 99)(72 88 118 142)(73 151 119 97)(74 86 120 160)(75 149 101 95)(76 84 102 158)(77 147 103 93)(78 82 104 156)(79 145 105 91)(80 100 106 154)

G:=sub<Sym(160)| (1,85,124,149)(2,86,125,150)(3,87,126,151)(4,88,127,152)(5,89,128,153)(6,90,129,154)(7,91,130,155)(8,92,131,156)(9,93,132,157)(10,94,133,158)(11,95,134,159)(12,96,135,160)(13,97,136,141)(14,98,137,142)(15,99,138,143)(16,100,139,144)(17,81,140,145)(18,82,121,146)(19,83,122,147)(20,84,123,148)(21,108,53,72)(22,109,54,73)(23,110,55,74)(24,111,56,75)(25,112,57,76)(26,113,58,77)(27,114,59,78)(28,115,60,79)(29,116,41,80)(30,117,42,61)(31,118,43,62)(32,119,44,63)(33,120,45,64)(34,101,46,65)(35,102,47,66)(36,103,48,67)(37,104,49,68)(38,105,50,69)(39,106,51,70)(40,107,52,71), (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,81)(8,82)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,91)(18,92)(19,93)(20,94)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,107)(62,108)(63,109)(64,110)(65,111)(66,112)(67,113)(68,114)(69,115)(70,116)(71,117)(72,118)(73,119)(74,120)(75,101)(76,102)(77,103)(78,104)(79,105)(80,106)(121,156)(122,157)(123,158)(124,159)(125,160)(126,141)(127,142)(128,143)(129,144)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151)(137,152)(138,153)(139,154)(140,155), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,34,134,56)(2,45,135,23)(3,32,136,54)(4,43,137,21)(5,30,138,52)(6,41,139,39)(7,28,140,50)(8,59,121,37)(9,26,122,48)(10,57,123,35)(11,24,124,46)(12,55,125,33)(13,22,126,44)(14,53,127,31)(15,40,128,42)(16,51,129,29)(17,38,130,60)(18,49,131,27)(19,36,132,58)(20,47,133,25)(61,143,107,89)(62,98,108,152)(63,141,109,87)(64,96,110,150)(65,159,111,85)(66,94,112,148)(67,157,113,83)(68,92,114,146)(69,155,115,81)(70,90,116,144)(71,153,117,99)(72,88,118,142)(73,151,119,97)(74,86,120,160)(75,149,101,95)(76,84,102,158)(77,147,103,93)(78,82,104,156)(79,145,105,91)(80,100,106,154)>;

G:=Group( (1,85,124,149)(2,86,125,150)(3,87,126,151)(4,88,127,152)(5,89,128,153)(6,90,129,154)(7,91,130,155)(8,92,131,156)(9,93,132,157)(10,94,133,158)(11,95,134,159)(12,96,135,160)(13,97,136,141)(14,98,137,142)(15,99,138,143)(16,100,139,144)(17,81,140,145)(18,82,121,146)(19,83,122,147)(20,84,123,148)(21,108,53,72)(22,109,54,73)(23,110,55,74)(24,111,56,75)(25,112,57,76)(26,113,58,77)(27,114,59,78)(28,115,60,79)(29,116,41,80)(30,117,42,61)(31,118,43,62)(32,119,44,63)(33,120,45,64)(34,101,46,65)(35,102,47,66)(36,103,48,67)(37,104,49,68)(38,105,50,69)(39,106,51,70)(40,107,52,71), (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,81)(8,82)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,91)(18,92)(19,93)(20,94)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,107)(62,108)(63,109)(64,110)(65,111)(66,112)(67,113)(68,114)(69,115)(70,116)(71,117)(72,118)(73,119)(74,120)(75,101)(76,102)(77,103)(78,104)(79,105)(80,106)(121,156)(122,157)(123,158)(124,159)(125,160)(126,141)(127,142)(128,143)(129,144)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151)(137,152)(138,153)(139,154)(140,155), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,34,134,56)(2,45,135,23)(3,32,136,54)(4,43,137,21)(5,30,138,52)(6,41,139,39)(7,28,140,50)(8,59,121,37)(9,26,122,48)(10,57,123,35)(11,24,124,46)(12,55,125,33)(13,22,126,44)(14,53,127,31)(15,40,128,42)(16,51,129,29)(17,38,130,60)(18,49,131,27)(19,36,132,58)(20,47,133,25)(61,143,107,89)(62,98,108,152)(63,141,109,87)(64,96,110,150)(65,159,111,85)(66,94,112,148)(67,157,113,83)(68,92,114,146)(69,155,115,81)(70,90,116,144)(71,153,117,99)(72,88,118,142)(73,151,119,97)(74,86,120,160)(75,149,101,95)(76,84,102,158)(77,147,103,93)(78,82,104,156)(79,145,105,91)(80,100,106,154) );

G=PermutationGroup([[(1,85,124,149),(2,86,125,150),(3,87,126,151),(4,88,127,152),(5,89,128,153),(6,90,129,154),(7,91,130,155),(8,92,131,156),(9,93,132,157),(10,94,133,158),(11,95,134,159),(12,96,135,160),(13,97,136,141),(14,98,137,142),(15,99,138,143),(16,100,139,144),(17,81,140,145),(18,82,121,146),(19,83,122,147),(20,84,123,148),(21,108,53,72),(22,109,54,73),(23,110,55,74),(24,111,56,75),(25,112,57,76),(26,113,58,77),(27,114,59,78),(28,115,60,79),(29,116,41,80),(30,117,42,61),(31,118,43,62),(32,119,44,63),(33,120,45,64),(34,101,46,65),(35,102,47,66),(36,103,48,67),(37,104,49,68),(38,105,50,69),(39,106,51,70),(40,107,52,71)], [(1,95),(2,96),(3,97),(4,98),(5,99),(6,100),(7,81),(8,82),(9,83),(10,84),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,91),(18,92),(19,93),(20,94),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,107),(62,108),(63,109),(64,110),(65,111),(66,112),(67,113),(68,114),(69,115),(70,116),(71,117),(72,118),(73,119),(74,120),(75,101),(76,102),(77,103),(78,104),(79,105),(80,106),(121,156),(122,157),(123,158),(124,159),(125,160),(126,141),(127,142),(128,143),(129,144),(130,145),(131,146),(132,147),(133,148),(134,149),(135,150),(136,151),(137,152),(138,153),(139,154),(140,155)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,34,134,56),(2,45,135,23),(3,32,136,54),(4,43,137,21),(5,30,138,52),(6,41,139,39),(7,28,140,50),(8,59,121,37),(9,26,122,48),(10,57,123,35),(11,24,124,46),(12,55,125,33),(13,22,126,44),(14,53,127,31),(15,40,128,42),(16,51,129,29),(17,38,130,60),(18,49,131,27),(19,36,132,58),(20,47,133,25),(61,143,107,89),(62,98,108,152),(63,141,109,87),(64,96,110,150),(65,159,111,85),(66,94,112,148),(67,157,113,83),(68,92,114,146),(69,155,115,81),(70,90,116,144),(71,153,117,99),(72,88,118,142),(73,151,119,97),(74,86,120,160),(75,149,101,95),(76,84,102,158),(77,147,103,93),(78,82,104,156),(79,145,105,91),(80,100,106,154)]])

59 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G···10N20A···20H20I···20X
order12222244444444455888810···1010···1020···2020···20
size1111442222444404022202020202···24···42···24···4

59 irreducible representations

dim111111122222222222444
type++++++++-++++-+
imageC1C2C2C2C2C2C2D4Q8D5C4○D4D10D10D10C4○D8C5⋊D4Dic10C4○D20C8⋊C22D4.D10D4.8D10
kernelD4.3Dic10C203C8C10.D8C20.Q8D4⋊Dic5C20.6Q8D4×C20C2×C20C5×D4C4×D4C20C42C4⋊C4C2×D4C10C2×C4D4C4C10C2C2
# reps111121122222224888144

Matrix representation of D4.3Dic10 in GL4(𝔽41) generated by

0100
40000
0010
0001
,
0100
1000
00400
00040
,
32000
03200
002839
00216
,
122900
292900
002739
003714
G:=sub<GL(4,GF(41))| [0,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,40,0,0,0,0,40],[32,0,0,0,0,32,0,0,0,0,28,2,0,0,39,16],[12,29,0,0,29,29,0,0,0,0,27,37,0,0,39,14] >;

D4.3Dic10 in GAP, Magma, Sage, TeX

D_4._3{\rm Dic}_{10}
% in TeX

G:=Group("D4.3Dic10");
// GroupNames label

G:=SmallGroup(320,636);
// by ID

G=gap.SmallGroup(320,636);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,253,344,254,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=a^2*c^10,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽