Copied to
clipboard

G = D4.Dic10order 320 = 26·5

1st non-split extension by D4 of Dic10 acting via Dic10/Dic5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.1Dic10, C4⋊C4.4D10, C51(D4.Q8), (C5×D4).1Q8, C20.3(C2×Q8), C406C411C2, D4⋊C4.6D5, (C2×C8).114D10, C10.D84C2, C4.Dic101C2, (D4×Dic5).5C2, C4.3(C2×Dic10), (C2×D4).128D10, C10.37(C4○D8), C20.8Q811C2, D4⋊Dic5.3C2, C22.165(D4×D5), C10.9(C22⋊Q8), C20.147(C4○D4), C4.76(D42D5), C2.10(D8⋊D5), C10.27(C8⋊C22), (C2×C40).125C22, (C2×C20).203C23, (C2×Dic5).193D4, (D4×C10).24C22, C4⋊Dic5.62C22, C2.8(SD163D5), (C4×Dic5).13C22, C2.14(Dic5.14D4), (C5×C4⋊C4).8C22, (C5×D4⋊C4).6C2, (C2×C10).216(C2×D4), (C2×C52C8).9C22, (C2×C4).310(C22×D5), SmallGroup(320,390)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D4.Dic10
C1C5C10C2×C10C2×C20C4×Dic5D4×Dic5 — D4.Dic10
C5C10C2×C20 — D4.Dic10
C1C22C2×C4D4⋊C4

Generators and relations for D4.Dic10
 G = < a,b,c,d | a4=b2=c20=1, d2=c10, bab=cac-1=a-1, ad=da, cbc-1=a-1b, bd=db, dcd-1=a2c-1 >

Subgroups: 374 in 102 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, Dic5, C20, C20, C2×C10, C2×C10, D4⋊C4, D4⋊C4, C4⋊C8, C4.Q8, C2.D8, C4×D4, C42.C2, C52C8, C40, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C22×C10, D4.Q8, C2×C52C8, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, C23.D5, C5×C4⋊C4, C2×C40, C22×Dic5, D4×C10, C10.D8, C20.8Q8, C406C4, D4⋊Dic5, C5×D4⋊C4, C4.Dic10, D4×Dic5, D4.Dic10
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22⋊Q8, C4○D8, C8⋊C22, Dic10, C22×D5, D4.Q8, C2×Dic10, D4×D5, D42D5, Dic5.14D4, D8⋊D5, SD163D5, D4.Dic10

Smallest permutation representation of D4.Dic10
On 160 points
Generators in S160
(1 104 159 56)(2 57 160 105)(3 106 141 58)(4 59 142 107)(5 108 143 60)(6 41 144 109)(7 110 145 42)(8 43 146 111)(9 112 147 44)(10 45 148 113)(11 114 149 46)(12 47 150 115)(13 116 151 48)(14 49 152 117)(15 118 153 50)(16 51 154 119)(17 120 155 52)(18 53 156 101)(19 102 157 54)(20 55 158 103)(21 72 89 140)(22 121 90 73)(23 74 91 122)(24 123 92 75)(25 76 93 124)(26 125 94 77)(27 78 95 126)(28 127 96 79)(29 80 97 128)(30 129 98 61)(31 62 99 130)(32 131 100 63)(33 64 81 132)(34 133 82 65)(35 66 83 134)(36 135 84 67)(37 68 85 136)(38 137 86 69)(39 70 87 138)(40 139 88 71)
(1 46)(2 12)(3 48)(4 14)(5 50)(6 16)(7 52)(8 18)(9 54)(10 20)(11 56)(13 58)(15 60)(17 42)(19 44)(21 130)(22 32)(23 132)(24 34)(25 134)(26 36)(27 136)(28 38)(29 138)(30 40)(31 140)(33 122)(35 124)(37 126)(39 128)(41 119)(43 101)(45 103)(47 105)(49 107)(51 109)(53 111)(55 113)(57 115)(59 117)(61 139)(62 89)(63 121)(64 91)(65 123)(66 93)(67 125)(68 95)(69 127)(70 97)(71 129)(72 99)(73 131)(74 81)(75 133)(76 83)(77 135)(78 85)(79 137)(80 87)(82 92)(84 94)(86 96)(88 98)(90 100)(102 147)(104 149)(106 151)(108 153)(110 155)(112 157)(114 159)(116 141)(118 143)(120 145)(142 152)(144 154)(146 156)(148 158)(150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 29 11 39)(2 96 12 86)(3 27 13 37)(4 94 14 84)(5 25 15 35)(6 92 16 82)(7 23 17 33)(8 90 18 100)(9 21 19 31)(10 88 20 98)(22 156 32 146)(24 154 34 144)(26 152 36 142)(28 150 38 160)(30 148 40 158)(41 75 51 65)(42 122 52 132)(43 73 53 63)(44 140 54 130)(45 71 55 61)(46 138 56 128)(47 69 57 79)(48 136 58 126)(49 67 59 77)(50 134 60 124)(62 112 72 102)(64 110 74 120)(66 108 76 118)(68 106 78 116)(70 104 80 114)(81 145 91 155)(83 143 93 153)(85 141 95 151)(87 159 97 149)(89 157 99 147)(101 131 111 121)(103 129 113 139)(105 127 115 137)(107 125 117 135)(109 123 119 133)

G:=sub<Sym(160)| (1,104,159,56)(2,57,160,105)(3,106,141,58)(4,59,142,107)(5,108,143,60)(6,41,144,109)(7,110,145,42)(8,43,146,111)(9,112,147,44)(10,45,148,113)(11,114,149,46)(12,47,150,115)(13,116,151,48)(14,49,152,117)(15,118,153,50)(16,51,154,119)(17,120,155,52)(18,53,156,101)(19,102,157,54)(20,55,158,103)(21,72,89,140)(22,121,90,73)(23,74,91,122)(24,123,92,75)(25,76,93,124)(26,125,94,77)(27,78,95,126)(28,127,96,79)(29,80,97,128)(30,129,98,61)(31,62,99,130)(32,131,100,63)(33,64,81,132)(34,133,82,65)(35,66,83,134)(36,135,84,67)(37,68,85,136)(38,137,86,69)(39,70,87,138)(40,139,88,71), (1,46)(2,12)(3,48)(4,14)(5,50)(6,16)(7,52)(8,18)(9,54)(10,20)(11,56)(13,58)(15,60)(17,42)(19,44)(21,130)(22,32)(23,132)(24,34)(25,134)(26,36)(27,136)(28,38)(29,138)(30,40)(31,140)(33,122)(35,124)(37,126)(39,128)(41,119)(43,101)(45,103)(47,105)(49,107)(51,109)(53,111)(55,113)(57,115)(59,117)(61,139)(62,89)(63,121)(64,91)(65,123)(66,93)(67,125)(68,95)(69,127)(70,97)(71,129)(72,99)(73,131)(74,81)(75,133)(76,83)(77,135)(78,85)(79,137)(80,87)(82,92)(84,94)(86,96)(88,98)(90,100)(102,147)(104,149)(106,151)(108,153)(110,155)(112,157)(114,159)(116,141)(118,143)(120,145)(142,152)(144,154)(146,156)(148,158)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,29,11,39)(2,96,12,86)(3,27,13,37)(4,94,14,84)(5,25,15,35)(6,92,16,82)(7,23,17,33)(8,90,18,100)(9,21,19,31)(10,88,20,98)(22,156,32,146)(24,154,34,144)(26,152,36,142)(28,150,38,160)(30,148,40,158)(41,75,51,65)(42,122,52,132)(43,73,53,63)(44,140,54,130)(45,71,55,61)(46,138,56,128)(47,69,57,79)(48,136,58,126)(49,67,59,77)(50,134,60,124)(62,112,72,102)(64,110,74,120)(66,108,76,118)(68,106,78,116)(70,104,80,114)(81,145,91,155)(83,143,93,153)(85,141,95,151)(87,159,97,149)(89,157,99,147)(101,131,111,121)(103,129,113,139)(105,127,115,137)(107,125,117,135)(109,123,119,133)>;

G:=Group( (1,104,159,56)(2,57,160,105)(3,106,141,58)(4,59,142,107)(5,108,143,60)(6,41,144,109)(7,110,145,42)(8,43,146,111)(9,112,147,44)(10,45,148,113)(11,114,149,46)(12,47,150,115)(13,116,151,48)(14,49,152,117)(15,118,153,50)(16,51,154,119)(17,120,155,52)(18,53,156,101)(19,102,157,54)(20,55,158,103)(21,72,89,140)(22,121,90,73)(23,74,91,122)(24,123,92,75)(25,76,93,124)(26,125,94,77)(27,78,95,126)(28,127,96,79)(29,80,97,128)(30,129,98,61)(31,62,99,130)(32,131,100,63)(33,64,81,132)(34,133,82,65)(35,66,83,134)(36,135,84,67)(37,68,85,136)(38,137,86,69)(39,70,87,138)(40,139,88,71), (1,46)(2,12)(3,48)(4,14)(5,50)(6,16)(7,52)(8,18)(9,54)(10,20)(11,56)(13,58)(15,60)(17,42)(19,44)(21,130)(22,32)(23,132)(24,34)(25,134)(26,36)(27,136)(28,38)(29,138)(30,40)(31,140)(33,122)(35,124)(37,126)(39,128)(41,119)(43,101)(45,103)(47,105)(49,107)(51,109)(53,111)(55,113)(57,115)(59,117)(61,139)(62,89)(63,121)(64,91)(65,123)(66,93)(67,125)(68,95)(69,127)(70,97)(71,129)(72,99)(73,131)(74,81)(75,133)(76,83)(77,135)(78,85)(79,137)(80,87)(82,92)(84,94)(86,96)(88,98)(90,100)(102,147)(104,149)(106,151)(108,153)(110,155)(112,157)(114,159)(116,141)(118,143)(120,145)(142,152)(144,154)(146,156)(148,158)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,29,11,39)(2,96,12,86)(3,27,13,37)(4,94,14,84)(5,25,15,35)(6,92,16,82)(7,23,17,33)(8,90,18,100)(9,21,19,31)(10,88,20,98)(22,156,32,146)(24,154,34,144)(26,152,36,142)(28,150,38,160)(30,148,40,158)(41,75,51,65)(42,122,52,132)(43,73,53,63)(44,140,54,130)(45,71,55,61)(46,138,56,128)(47,69,57,79)(48,136,58,126)(49,67,59,77)(50,134,60,124)(62,112,72,102)(64,110,74,120)(66,108,76,118)(68,106,78,116)(70,104,80,114)(81,145,91,155)(83,143,93,153)(85,141,95,151)(87,159,97,149)(89,157,99,147)(101,131,111,121)(103,129,113,139)(105,127,115,137)(107,125,117,135)(109,123,119,133) );

G=PermutationGroup([[(1,104,159,56),(2,57,160,105),(3,106,141,58),(4,59,142,107),(5,108,143,60),(6,41,144,109),(7,110,145,42),(8,43,146,111),(9,112,147,44),(10,45,148,113),(11,114,149,46),(12,47,150,115),(13,116,151,48),(14,49,152,117),(15,118,153,50),(16,51,154,119),(17,120,155,52),(18,53,156,101),(19,102,157,54),(20,55,158,103),(21,72,89,140),(22,121,90,73),(23,74,91,122),(24,123,92,75),(25,76,93,124),(26,125,94,77),(27,78,95,126),(28,127,96,79),(29,80,97,128),(30,129,98,61),(31,62,99,130),(32,131,100,63),(33,64,81,132),(34,133,82,65),(35,66,83,134),(36,135,84,67),(37,68,85,136),(38,137,86,69),(39,70,87,138),(40,139,88,71)], [(1,46),(2,12),(3,48),(4,14),(5,50),(6,16),(7,52),(8,18),(9,54),(10,20),(11,56),(13,58),(15,60),(17,42),(19,44),(21,130),(22,32),(23,132),(24,34),(25,134),(26,36),(27,136),(28,38),(29,138),(30,40),(31,140),(33,122),(35,124),(37,126),(39,128),(41,119),(43,101),(45,103),(47,105),(49,107),(51,109),(53,111),(55,113),(57,115),(59,117),(61,139),(62,89),(63,121),(64,91),(65,123),(66,93),(67,125),(68,95),(69,127),(70,97),(71,129),(72,99),(73,131),(74,81),(75,133),(76,83),(77,135),(78,85),(79,137),(80,87),(82,92),(84,94),(86,96),(88,98),(90,100),(102,147),(104,149),(106,151),(108,153),(110,155),(112,157),(114,159),(116,141),(118,143),(120,145),(142,152),(144,154),(146,156),(148,158),(150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,29,11,39),(2,96,12,86),(3,27,13,37),(4,94,14,84),(5,25,15,35),(6,92,16,82),(7,23,17,33),(8,90,18,100),(9,21,19,31),(10,88,20,98),(22,156,32,146),(24,154,34,144),(26,152,36,142),(28,150,38,160),(30,148,40,158),(41,75,51,65),(42,122,52,132),(43,73,53,63),(44,140,54,130),(45,71,55,61),(46,138,56,128),(47,69,57,79),(48,136,58,126),(49,67,59,77),(50,134,60,124),(62,112,72,102),(64,110,74,120),(66,108,76,118),(68,106,78,116),(70,104,80,114),(81,145,91,155),(83,143,93,153),(85,141,95,151),(87,159,97,149),(89,157,99,147),(101,131,111,121),(103,129,113,139),(105,127,115,137),(107,125,117,135),(109,123,119,133)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222244444444455888810···1010101010202020202020202040···40
size111144228101020202040224420202···28888444488884···4

47 irreducible representations

dim1111111122222222244444
type+++++++++-++++-+-+
imageC1C2C2C2C2C2C2C2D4Q8D5C4○D4D10D10D10C4○D8Dic10C8⋊C22D42D5D4×D5D8⋊D5SD163D5
kernelD4.Dic10C10.D8C20.8Q8C406C4D4⋊Dic5C5×D4⋊C4C4.Dic10D4×Dic5C2×Dic5C5×D4D4⋊C4C20C4⋊C4C2×C8C2×D4C10D4C10C4C22C2C2
# reps1111111122222224812244

Matrix representation of D4.Dic10 in GL4(𝔽41) generated by

11800
94000
0010
0001
,
402300
0100
00400
00040
,
111700
293000
003039
001614
,
32000
03200
001837
003023
G:=sub<GL(4,GF(41))| [1,9,0,0,18,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,23,1,0,0,0,0,40,0,0,0,0,40],[11,29,0,0,17,30,0,0,0,0,30,16,0,0,39,14],[32,0,0,0,0,32,0,0,0,0,18,30,0,0,37,23] >;

D4.Dic10 in GAP, Magma, Sage, TeX

D_4.{\rm Dic}_{10}
% in TeX

G:=Group("D4.Dic10");
// GroupNames label

G:=SmallGroup(320,390);
// by ID

G=gap.SmallGroup(320,390);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,926,219,58,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=c^10,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽