Copied to
clipboard

G = Dic102D4order 320 = 26·5

2nd semidirect product of Dic10 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic102D4, Dic54SD16, C4.82(D4×D5), D4⋊C49D5, C51(C4⋊SD16), D206C42C2, C4⋊C4.131D10, (C2×D4).18D10, C20.2(C4○D4), C4.1(C4○D20), C20⋊D4.5C2, (C2×C8).113D10, C20.101(C2×D4), C2.10(D5×SD16), Dic53Q83C2, C2.9(D8⋊D5), C20.8Q810C2, C10.21(C2×SD16), C22.164(D4×D5), C10.13(C4⋊D4), C10.26(C8⋊C22), (C2×C40).124C22, (C2×C20).202C23, (C2×Dic5).192D4, (C2×D20).49C22, (D4×C10).23C22, C2.16(D10⋊D4), (C4×Dic5).12C22, (C2×Dic10).55C22, (C2×D4.D5)⋊2C2, (C5×D4⋊C4)⋊9C2, (C2×C40⋊C2)⋊13C2, (C5×C4⋊C4).7C22, (C2×C10).215(C2×D4), (C2×C52C8).8C22, (C2×C4).309(C22×D5), SmallGroup(320,389)

Series: Derived Chief Lower central Upper central

C1C2×C20 — Dic102D4
C1C5C10C20C2×C20C4×Dic5C20⋊D4 — Dic102D4
C5C10C2×C20 — Dic102D4
C1C22C2×C4D4⋊C4

Generators and relations for Dic102D4
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=dad=a-1, cac-1=a9, bc=cb, dbd=a15b, dcd=c-1 >

Subgroups: 614 in 128 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C2×D4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, D4⋊C4, D4⋊C4, C4⋊C8, C4×Q8, C41D4, C2×SD16, C52C8, C40, Dic10, Dic10, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C4⋊SD16, C40⋊C2, C2×C52C8, C4×Dic5, C4×Dic5, C10.D4, D4.D5, C5×C4⋊C4, C2×C40, C2×Dic10, C2×D20, C2×C5⋊D4, D4×C10, D206C4, C20.8Q8, C5×D4⋊C4, Dic53Q8, C2×C40⋊C2, C2×D4.D5, C20⋊D4, Dic102D4
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C4⋊D4, C2×SD16, C8⋊C22, C22×D5, C4⋊SD16, C4○D20, D4×D5, D10⋊D4, D8⋊D5, D5×SD16, Dic102D4

Smallest permutation representation of Dic102D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 42 11 52)(2 41 12 51)(3 60 13 50)(4 59 14 49)(5 58 15 48)(6 57 16 47)(7 56 17 46)(8 55 18 45)(9 54 19 44)(10 53 20 43)(21 76 31 66)(22 75 32 65)(23 74 33 64)(24 73 34 63)(25 72 35 62)(26 71 36 61)(27 70 37 80)(28 69 38 79)(29 68 39 78)(30 67 40 77)(81 159 91 149)(82 158 92 148)(83 157 93 147)(84 156 94 146)(85 155 95 145)(86 154 96 144)(87 153 97 143)(88 152 98 142)(89 151 99 141)(90 150 100 160)(101 137 111 127)(102 136 112 126)(103 135 113 125)(104 134 114 124)(105 133 115 123)(106 132 116 122)(107 131 117 121)(108 130 118 140)(109 129 119 139)(110 128 120 138)
(1 23 114 152)(2 32 115 141)(3 21 116 150)(4 30 117 159)(5 39 118 148)(6 28 119 157)(7 37 120 146)(8 26 101 155)(9 35 102 144)(10 24 103 153)(11 33 104 142)(12 22 105 151)(13 31 106 160)(14 40 107 149)(15 29 108 158)(16 38 109 147)(17 27 110 156)(18 36 111 145)(19 25 112 154)(20 34 113 143)(41 65 123 89)(42 74 124 98)(43 63 125 87)(44 72 126 96)(45 61 127 85)(46 70 128 94)(47 79 129 83)(48 68 130 92)(49 77 131 81)(50 66 132 90)(51 75 133 99)(52 64 134 88)(53 73 135 97)(54 62 136 86)(55 71 137 95)(56 80 138 84)(57 69 139 93)(58 78 140 82)(59 67 121 91)(60 76 122 100)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 154)(22 153)(23 152)(24 151)(25 150)(26 149)(27 148)(28 147)(29 146)(30 145)(31 144)(32 143)(33 142)(34 141)(35 160)(36 159)(37 158)(38 157)(39 156)(40 155)(41 48)(42 47)(43 46)(44 45)(49 60)(50 59)(51 58)(52 57)(53 56)(54 55)(61 96)(62 95)(63 94)(64 93)(65 92)(66 91)(67 90)(68 89)(69 88)(70 87)(71 86)(72 85)(73 84)(74 83)(75 82)(76 81)(77 100)(78 99)(79 98)(80 97)(101 107)(102 106)(103 105)(108 120)(109 119)(110 118)(111 117)(112 116)(113 115)(121 132)(122 131)(123 130)(124 129)(125 128)(126 127)(133 140)(134 139)(135 138)(136 137)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,42,11,52)(2,41,12,51)(3,60,13,50)(4,59,14,49)(5,58,15,48)(6,57,16,47)(7,56,17,46)(8,55,18,45)(9,54,19,44)(10,53,20,43)(21,76,31,66)(22,75,32,65)(23,74,33,64)(24,73,34,63)(25,72,35,62)(26,71,36,61)(27,70,37,80)(28,69,38,79)(29,68,39,78)(30,67,40,77)(81,159,91,149)(82,158,92,148)(83,157,93,147)(84,156,94,146)(85,155,95,145)(86,154,96,144)(87,153,97,143)(88,152,98,142)(89,151,99,141)(90,150,100,160)(101,137,111,127)(102,136,112,126)(103,135,113,125)(104,134,114,124)(105,133,115,123)(106,132,116,122)(107,131,117,121)(108,130,118,140)(109,129,119,139)(110,128,120,138), (1,23,114,152)(2,32,115,141)(3,21,116,150)(4,30,117,159)(5,39,118,148)(6,28,119,157)(7,37,120,146)(8,26,101,155)(9,35,102,144)(10,24,103,153)(11,33,104,142)(12,22,105,151)(13,31,106,160)(14,40,107,149)(15,29,108,158)(16,38,109,147)(17,27,110,156)(18,36,111,145)(19,25,112,154)(20,34,113,143)(41,65,123,89)(42,74,124,98)(43,63,125,87)(44,72,126,96)(45,61,127,85)(46,70,128,94)(47,79,129,83)(48,68,130,92)(49,77,131,81)(50,66,132,90)(51,75,133,99)(52,64,134,88)(53,73,135,97)(54,62,136,86)(55,71,137,95)(56,80,138,84)(57,69,139,93)(58,78,140,82)(59,67,121,91)(60,76,122,100), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,154)(22,153)(23,152)(24,151)(25,150)(26,149)(27,148)(28,147)(29,146)(30,145)(31,144)(32,143)(33,142)(34,141)(35,160)(36,159)(37,158)(38,157)(39,156)(40,155)(41,48)(42,47)(43,46)(44,45)(49,60)(50,59)(51,58)(52,57)(53,56)(54,55)(61,96)(62,95)(63,94)(64,93)(65,92)(66,91)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,84)(74,83)(75,82)(76,81)(77,100)(78,99)(79,98)(80,97)(101,107)(102,106)(103,105)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115)(121,132)(122,131)(123,130)(124,129)(125,128)(126,127)(133,140)(134,139)(135,138)(136,137)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,42,11,52)(2,41,12,51)(3,60,13,50)(4,59,14,49)(5,58,15,48)(6,57,16,47)(7,56,17,46)(8,55,18,45)(9,54,19,44)(10,53,20,43)(21,76,31,66)(22,75,32,65)(23,74,33,64)(24,73,34,63)(25,72,35,62)(26,71,36,61)(27,70,37,80)(28,69,38,79)(29,68,39,78)(30,67,40,77)(81,159,91,149)(82,158,92,148)(83,157,93,147)(84,156,94,146)(85,155,95,145)(86,154,96,144)(87,153,97,143)(88,152,98,142)(89,151,99,141)(90,150,100,160)(101,137,111,127)(102,136,112,126)(103,135,113,125)(104,134,114,124)(105,133,115,123)(106,132,116,122)(107,131,117,121)(108,130,118,140)(109,129,119,139)(110,128,120,138), (1,23,114,152)(2,32,115,141)(3,21,116,150)(4,30,117,159)(5,39,118,148)(6,28,119,157)(7,37,120,146)(8,26,101,155)(9,35,102,144)(10,24,103,153)(11,33,104,142)(12,22,105,151)(13,31,106,160)(14,40,107,149)(15,29,108,158)(16,38,109,147)(17,27,110,156)(18,36,111,145)(19,25,112,154)(20,34,113,143)(41,65,123,89)(42,74,124,98)(43,63,125,87)(44,72,126,96)(45,61,127,85)(46,70,128,94)(47,79,129,83)(48,68,130,92)(49,77,131,81)(50,66,132,90)(51,75,133,99)(52,64,134,88)(53,73,135,97)(54,62,136,86)(55,71,137,95)(56,80,138,84)(57,69,139,93)(58,78,140,82)(59,67,121,91)(60,76,122,100), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,154)(22,153)(23,152)(24,151)(25,150)(26,149)(27,148)(28,147)(29,146)(30,145)(31,144)(32,143)(33,142)(34,141)(35,160)(36,159)(37,158)(38,157)(39,156)(40,155)(41,48)(42,47)(43,46)(44,45)(49,60)(50,59)(51,58)(52,57)(53,56)(54,55)(61,96)(62,95)(63,94)(64,93)(65,92)(66,91)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,84)(74,83)(75,82)(76,81)(77,100)(78,99)(79,98)(80,97)(101,107)(102,106)(103,105)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115)(121,132)(122,131)(123,130)(124,129)(125,128)(126,127)(133,140)(134,139)(135,138)(136,137) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,42,11,52),(2,41,12,51),(3,60,13,50),(4,59,14,49),(5,58,15,48),(6,57,16,47),(7,56,17,46),(8,55,18,45),(9,54,19,44),(10,53,20,43),(21,76,31,66),(22,75,32,65),(23,74,33,64),(24,73,34,63),(25,72,35,62),(26,71,36,61),(27,70,37,80),(28,69,38,79),(29,68,39,78),(30,67,40,77),(81,159,91,149),(82,158,92,148),(83,157,93,147),(84,156,94,146),(85,155,95,145),(86,154,96,144),(87,153,97,143),(88,152,98,142),(89,151,99,141),(90,150,100,160),(101,137,111,127),(102,136,112,126),(103,135,113,125),(104,134,114,124),(105,133,115,123),(106,132,116,122),(107,131,117,121),(108,130,118,140),(109,129,119,139),(110,128,120,138)], [(1,23,114,152),(2,32,115,141),(3,21,116,150),(4,30,117,159),(5,39,118,148),(6,28,119,157),(7,37,120,146),(8,26,101,155),(9,35,102,144),(10,24,103,153),(11,33,104,142),(12,22,105,151),(13,31,106,160),(14,40,107,149),(15,29,108,158),(16,38,109,147),(17,27,110,156),(18,36,111,145),(19,25,112,154),(20,34,113,143),(41,65,123,89),(42,74,124,98),(43,63,125,87),(44,72,126,96),(45,61,127,85),(46,70,128,94),(47,79,129,83),(48,68,130,92),(49,77,131,81),(50,66,132,90),(51,75,133,99),(52,64,134,88),(53,73,135,97),(54,62,136,86),(55,71,137,95),(56,80,138,84),(57,69,139,93),(58,78,140,82),(59,67,121,91),(60,76,122,100)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,154),(22,153),(23,152),(24,151),(25,150),(26,149),(27,148),(28,147),(29,146),(30,145),(31,144),(32,143),(33,142),(34,141),(35,160),(36,159),(37,158),(38,157),(39,156),(40,155),(41,48),(42,47),(43,46),(44,45),(49,60),(50,59),(51,58),(52,57),(53,56),(54,55),(61,96),(62,95),(63,94),(64,93),(65,92),(66,91),(67,90),(68,89),(69,88),(70,87),(71,86),(72,85),(73,84),(74,83),(75,82),(76,81),(77,100),(78,99),(79,98),(80,97),(101,107),(102,106),(103,105),(108,120),(109,119),(110,118),(111,117),(112,116),(113,115),(121,132),(122,131),(123,130),(124,129),(125,128),(126,127),(133,140),(134,139),(135,138),(136,137)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222244444444455888810···1010101010202020202020202040···40
size111184022441010202020224420202···28888444488884···4

47 irreducible representations

dim1111111122222222244444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D5SD16C4○D4D10D10D10C4○D20C8⋊C22D4×D5D4×D5D8⋊D5D5×SD16
kernelDic102D4D206C4C20.8Q8C5×D4⋊C4Dic53Q8C2×C40⋊C2C2×D4.D5C20⋊D4Dic10C2×Dic5D4⋊C4Dic5C20C4⋊C4C2×C8C2×D4C4C10C4C22C2C2
# reps1111111122242222812244

Matrix representation of Dic102D4 in GL4(𝔽41) generated by

354000
1000
004039
0011
,
252500
391600
00011
00260
,
212100
182000
00400
00040
,
63500
403500
0010
004040
G:=sub<GL(4,GF(41))| [35,1,0,0,40,0,0,0,0,0,40,1,0,0,39,1],[25,39,0,0,25,16,0,0,0,0,0,26,0,0,11,0],[21,18,0,0,21,20,0,0,0,0,40,0,0,0,0,40],[6,40,0,0,35,35,0,0,0,0,1,40,0,0,0,40] >;

Dic102D4 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes_2D_4
% in TeX

G:=Group("Dic10:2D4");
// GroupNames label

G:=SmallGroup(320,389);
// by ID

G=gap.SmallGroup(320,389);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,253,135,268,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a^9,b*c=c*b,d*b*d=a^15*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽