metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D8⋊1F5, D40⋊4C4, D5.2D16, D10.19D8, D5.2SD32, Dic5.4SD16, C5⋊(C2.D16), (C5×D8)⋊4C4, D5⋊C16⋊1C2, C40.8(C2×C4), D5.D8⋊1C2, (D5×D8).4C2, C8.10(C2×F5), (C4×D5).21D4, C5⋊2C8.12D4, C4.2(C22⋊F5), C20.2(C22⋊C4), C2.7(D20⋊C4), (C8×D5).17C22, C10.6(D4⋊C4), SmallGroup(320,242)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D5.D16
G = < a,b,c,d | a5=b2=c16=1, d2=a-1b, bab=a-1, cac-1=dad-1=a3, cbc-1=dbd-1=a2b, dcd-1=a-1bc-1 >
Subgroups: 458 in 66 conjugacy classes, 22 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, C23, D5, D5, C10, C10, C16, C4⋊C4, C2×C8, D8, D8, C2×D4, Dic5, C20, F5, D10, D10, C2×C10, C2.D8, C2×C16, C2×D8, C5⋊2C8, C40, C4×D5, D20, C5⋊D4, C5×D4, C2×F5, C22×D5, C2.D16, C5⋊C16, C8×D5, D40, D4⋊D5, C5×D8, C4⋊F5, D4×D5, D5⋊C16, D5.D8, D5×D8, D5.D16
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, D8, SD16, F5, D4⋊C4, D16, SD32, C2×F5, C2.D16, C22⋊F5, D20⋊C4, D5.D16
Character table of D5.D16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5 | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | 20 | 40A | 40B | |
size | 1 | 1 | 5 | 5 | 8 | 40 | 2 | 10 | 40 | 40 | 4 | 2 | 2 | 10 | 10 | 4 | 16 | 16 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -i | i | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | i | i | -i | -i | -i | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | i | -i | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | -i | -i | i | i | i | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | i | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | i | -i | -i | -i | -i | i | i | i | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | i | -i | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | i | i | i | i | -i | -i | -i | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -2 | 0 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -2 | 0 | 0 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -√2 | √2 | -√2 | √2 | -2 | 0 | 0 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | -ζ165+ζ163 | 0 | -√2 | √2 | orthogonal lifted from D16 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | √2 | -√2 | √2 | -√2 | -2 | 0 | 0 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | 0 | √2 | -√2 | orthogonal lifted from D16 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -√2 | √2 | -√2 | √2 | -2 | 0 | 0 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | ζ165-ζ163 | 0 | -√2 | √2 | orthogonal lifted from D16 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | √2 | -√2 | √2 | -√2 | -2 | 0 | 0 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | ζ167-ζ16 | 0 | √2 | -√2 | orthogonal lifted from D16 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | √-2 | -√-2 | -2 | 0 | 0 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -√2 | √2 | √2 | -√2 | -2 | 0 | 0 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | 0 | -√2 | √2 | complex lifted from SD32 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | √-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | -√-2 | √-2 | -2 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | √2 | -√2 | -√2 | √2 | -2 | 0 | 0 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | 0 | √2 | -√2 | complex lifted from SD32 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | √2 | -√2 | -√2 | √2 | -2 | 0 | 0 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | 0 | √2 | -√2 | complex lifted from SD32 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -√2 | √2 | √2 | -√2 | -2 | 0 | 0 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | 0 | -√2 | √2 | complex lifted from SD32 |
ρ23 | 4 | 4 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | -1 | 4 | 4 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from C2×F5 |
ρ24 | 4 | 4 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | -1 | 4 | 4 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ25 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -1 | -4 | -4 | 0 | 0 | -1 | -√5 | √5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | orthogonal lifted from C22⋊F5 |
ρ26 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -1 | -4 | -4 | 0 | 0 | -1 | √5 | -√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | orthogonal lifted from C22⋊F5 |
ρ27 | 8 | 8 | 0 | 0 | 0 | 0 | -8 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D20⋊C4, Schur index 2 |
ρ28 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -4√2 | 4√2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | orthogonal faithful, Schur index 2 |
ρ29 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4√2 | -4√2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | orthogonal faithful, Schur index 2 |
(1 24 40 62 73)(2 63 25 74 41)(3 75 64 42 26)(4 43 76 27 49)(5 28 44 50 77)(6 51 29 78 45)(7 79 52 46 30)(8 47 80 31 53)(9 32 48 54 65)(10 55 17 66 33)(11 67 56 34 18)(12 35 68 19 57)(13 20 36 58 69)(14 59 21 70 37)(15 71 60 38 22)(16 39 72 23 61)
(1 73)(2 41)(3 26)(4 49)(5 77)(6 45)(7 30)(8 53)(9 65)(10 33)(11 18)(12 57)(13 69)(14 37)(15 22)(16 61)(19 35)(20 58)(23 39)(24 62)(27 43)(28 50)(31 47)(32 54)(34 67)(38 71)(42 75)(46 79)(51 78)(55 66)(59 70)(63 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 30 66 79)(18 78 67 29)(19 28 68 77)(20 76 69 27)(21 26 70 75)(22 74 71 25)(23 24 72 73)(31 32 80 65)(33 46 55 52)(34 51 56 45)(35 44 57 50)(36 49 58 43)(37 42 59 64)(38 63 60 41)(39 40 61 62)(47 48 53 54)
G:=sub<Sym(80)| (1,24,40,62,73)(2,63,25,74,41)(3,75,64,42,26)(4,43,76,27,49)(5,28,44,50,77)(6,51,29,78,45)(7,79,52,46,30)(8,47,80,31,53)(9,32,48,54,65)(10,55,17,66,33)(11,67,56,34,18)(12,35,68,19,57)(13,20,36,58,69)(14,59,21,70,37)(15,71,60,38,22)(16,39,72,23,61), (1,73)(2,41)(3,26)(4,49)(5,77)(6,45)(7,30)(8,53)(9,65)(10,33)(11,18)(12,57)(13,69)(14,37)(15,22)(16,61)(19,35)(20,58)(23,39)(24,62)(27,43)(28,50)(31,47)(32,54)(34,67)(38,71)(42,75)(46,79)(51,78)(55,66)(59,70)(63,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,30,66,79)(18,78,67,29)(19,28,68,77)(20,76,69,27)(21,26,70,75)(22,74,71,25)(23,24,72,73)(31,32,80,65)(33,46,55,52)(34,51,56,45)(35,44,57,50)(36,49,58,43)(37,42,59,64)(38,63,60,41)(39,40,61,62)(47,48,53,54)>;
G:=Group( (1,24,40,62,73)(2,63,25,74,41)(3,75,64,42,26)(4,43,76,27,49)(5,28,44,50,77)(6,51,29,78,45)(7,79,52,46,30)(8,47,80,31,53)(9,32,48,54,65)(10,55,17,66,33)(11,67,56,34,18)(12,35,68,19,57)(13,20,36,58,69)(14,59,21,70,37)(15,71,60,38,22)(16,39,72,23,61), (1,73)(2,41)(3,26)(4,49)(5,77)(6,45)(7,30)(8,53)(9,65)(10,33)(11,18)(12,57)(13,69)(14,37)(15,22)(16,61)(19,35)(20,58)(23,39)(24,62)(27,43)(28,50)(31,47)(32,54)(34,67)(38,71)(42,75)(46,79)(51,78)(55,66)(59,70)(63,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,30,66,79)(18,78,67,29)(19,28,68,77)(20,76,69,27)(21,26,70,75)(22,74,71,25)(23,24,72,73)(31,32,80,65)(33,46,55,52)(34,51,56,45)(35,44,57,50)(36,49,58,43)(37,42,59,64)(38,63,60,41)(39,40,61,62)(47,48,53,54) );
G=PermutationGroup([[(1,24,40,62,73),(2,63,25,74,41),(3,75,64,42,26),(4,43,76,27,49),(5,28,44,50,77),(6,51,29,78,45),(7,79,52,46,30),(8,47,80,31,53),(9,32,48,54,65),(10,55,17,66,33),(11,67,56,34,18),(12,35,68,19,57),(13,20,36,58,69),(14,59,21,70,37),(15,71,60,38,22),(16,39,72,23,61)], [(1,73),(2,41),(3,26),(4,49),(5,77),(6,45),(7,30),(8,53),(9,65),(10,33),(11,18),(12,57),(13,69),(14,37),(15,22),(16,61),(19,35),(20,58),(23,39),(24,62),(27,43),(28,50),(31,47),(32,54),(34,67),(38,71),(42,75),(46,79),(51,78),(55,66),(59,70),(63,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,30,66,79),(18,78,67,29),(19,28,68,77),(20,76,69,27),(21,26,70,75),(22,74,71,25),(23,24,72,73),(31,32,80,65),(33,46,55,52),(34,51,56,45),(35,44,57,50),(36,49,58,43),(37,42,59,64),(38,63,60,41),(39,40,61,62),(47,48,53,54)]])
Matrix representation of D5.D16 ►in GL6(𝔽241)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 240 | 189 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 189 |
0 | 0 | 0 | 0 | 52 | 52 |
240 | 0 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 189 |
0 | 0 | 0 | 0 | 0 | 1 |
144 | 161 | 0 | 0 | 0 | 0 |
36 | 62 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 52 | 1 | 0 | 0 |
144 | 161 | 0 | 0 | 0 | 0 |
208 | 97 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 189 | 240 | 0 | 0 |
G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,240,0,0,0,0,1,189,0,0,0,0,0,0,240,52,0,0,0,0,189,52],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,240,0,0,0,0,0,189,1],[144,36,0,0,0,0,161,62,0,0,0,0,0,0,0,0,240,52,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[144,208,0,0,0,0,161,97,0,0,0,0,0,0,0,0,1,189,0,0,0,0,0,240,0,0,1,0,0,0,0,0,0,1,0,0] >;
D5.D16 in GAP, Magma, Sage, TeX
D_5.D_{16}
% in TeX
G:=Group("D5.D16");
// GroupNames label
G:=SmallGroup(320,242);
// by ID
G=gap.SmallGroup(320,242);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,675,346,192,1684,851,102,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^16=1,d^2=a^-1*b,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^3,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=a^-1*b*c^-1>;
// generators/relations
Export