Copied to
clipboard

G = D5×C2.D8order 320 = 26·5

Direct product of D5 and C2.D8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C2.D8, D10.23D8, D10.12Q16, (C8×D5)⋊1C4, C813(C4×D5), C2.4(D5×D8), C4015(C2×C4), C2.4(D5×Q16), C4.29(Q8×D5), C405C420C2, C10.28(C2×D8), (C4×D5).15Q8, C20.20(C2×Q8), C4⋊C4.169D10, (C2×C8).229D10, C10.23(C2×Q16), C22.89(D4×D5), D10.37(C4⋊C4), C10.D819C2, (C2×C40).81C22, Dic5.17(C4⋊C4), (C2×C20).295C23, C20.107(C22×C4), (C2×Dic5).147D4, (C22×D5).155D4, C4⋊Dic5.121C22, C52(C2×C2.D8), (D5×C2×C8).2C2, C4.79(C2×C4×D5), (D5×C4⋊C4).7C2, C2.14(D5×C4⋊C4), (C5×C2.D8)⋊3C2, C52C828(C2×C4), C10.36(C2×C4⋊C4), (C4×D5).75(C2×C4), (C2×C10).300(C2×D4), (C5×C4⋊C4).88C22, (C2×C4×D5).304C22, (C2×C4).398(C22×D5), (C2×C52C8).241C22, SmallGroup(320,506)

Series: Derived Chief Lower central Upper central

C1C20 — D5×C2.D8
C1C5C10C2×C10C2×C20C2×C4×D5D5×C2×C8 — D5×C2.D8
C5C10C20 — D5×C2.D8
C1C22C2×C4C2.D8

Generators and relations for D5×C2.D8
 G = < a,b,c,d,e | a5=b2=c2=d8=1, e2=c, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 478 in 130 conjugacy classes, 63 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, C10, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, Dic5, Dic5, C20, C20, D10, C2×C10, C2.D8, C2.D8, C2×C4⋊C4, C22×C8, C52C8, C40, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C2×C2.D8, C8×D5, C2×C52C8, C10.D4, C4⋊Dic5, C5×C4⋊C4, C2×C40, C2×C4×D5, C2×C4×D5, C10.D8, C405C4, C5×C2.D8, D5×C4⋊C4, D5×C2×C8, D5×C2.D8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C4⋊C4, D8, Q16, C22×C4, C2×D4, C2×Q8, D10, C2.D8, C2×C4⋊C4, C2×D8, C2×Q16, C4×D5, C22×D5, C2×C2.D8, C2×C4×D5, D4×D5, Q8×D5, D5×C4⋊C4, D5×D8, D5×Q16, D5×C2.D8

Smallest permutation representation of D5×C2.D8
On 160 points
Generators in S160
(1 113 21 133 99)(2 114 22 134 100)(3 115 23 135 101)(4 116 24 136 102)(5 117 17 129 103)(6 118 18 130 104)(7 119 19 131 97)(8 120 20 132 98)(9 49 93 81 124)(10 50 94 82 125)(11 51 95 83 126)(12 52 96 84 127)(13 53 89 85 128)(14 54 90 86 121)(15 55 91 87 122)(16 56 92 88 123)(25 70 107 146 137)(26 71 108 147 138)(27 72 109 148 139)(28 65 110 149 140)(29 66 111 150 141)(30 67 112 151 142)(31 68 105 152 143)(32 69 106 145 144)(33 74 58 160 45)(34 75 59 153 46)(35 76 60 154 47)(36 77 61 155 48)(37 78 62 156 41)(38 79 63 157 42)(39 80 64 158 43)(40 73 57 159 44)
(1 103)(2 104)(3 97)(4 98)(5 99)(6 100)(7 101)(8 102)(9 53)(10 54)(11 55)(12 56)(13 49)(14 50)(15 51)(16 52)(17 21)(18 22)(19 23)(20 24)(25 150)(26 151)(27 152)(28 145)(29 146)(30 147)(31 148)(32 149)(33 37)(34 38)(35 39)(36 40)(41 74)(42 75)(43 76)(44 77)(45 78)(46 79)(47 80)(48 73)(57 155)(58 156)(59 157)(60 158)(61 159)(62 160)(63 153)(64 154)(65 106)(66 107)(67 108)(68 109)(69 110)(70 111)(71 112)(72 105)(81 85)(82 86)(83 87)(84 88)(89 124)(90 125)(91 126)(92 127)(93 128)(94 121)(95 122)(96 123)(113 129)(114 130)(115 131)(116 132)(117 133)(118 134)(119 135)(120 136)(137 141)(138 142)(139 143)(140 144)
(1 105)(2 106)(3 107)(4 108)(5 109)(6 110)(7 111)(8 112)(9 63)(10 64)(11 57)(12 58)(13 59)(14 60)(15 61)(16 62)(17 139)(18 140)(19 141)(20 142)(21 143)(22 144)(23 137)(24 138)(25 135)(26 136)(27 129)(28 130)(29 131)(30 132)(31 133)(32 134)(33 84)(34 85)(35 86)(36 87)(37 88)(38 81)(39 82)(40 83)(41 92)(42 93)(43 94)(44 95)(45 96)(46 89)(47 90)(48 91)(49 157)(50 158)(51 159)(52 160)(53 153)(54 154)(55 155)(56 156)(65 104)(66 97)(67 98)(68 99)(69 100)(70 101)(71 102)(72 103)(73 126)(74 127)(75 128)(76 121)(77 122)(78 123)(79 124)(80 125)(113 152)(114 145)(115 146)(116 147)(117 148)(118 149)(119 150)(120 151)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 54 105 154)(2 53 106 153)(3 52 107 160)(4 51 108 159)(5 50 109 158)(6 49 110 157)(7 56 111 156)(8 55 112 155)(9 65 63 104)(10 72 64 103)(11 71 57 102)(12 70 58 101)(13 69 59 100)(14 68 60 99)(15 67 61 98)(16 66 62 97)(17 82 139 39)(18 81 140 38)(19 88 141 37)(20 87 142 36)(21 86 143 35)(22 85 144 34)(23 84 137 33)(24 83 138 40)(25 74 135 127)(26 73 136 126)(27 80 129 125)(28 79 130 124)(29 78 131 123)(30 77 132 122)(31 76 133 121)(32 75 134 128)(41 119 92 150)(42 118 93 149)(43 117 94 148)(44 116 95 147)(45 115 96 146)(46 114 89 145)(47 113 90 152)(48 120 91 151)

G:=sub<Sym(160)| (1,113,21,133,99)(2,114,22,134,100)(3,115,23,135,101)(4,116,24,136,102)(5,117,17,129,103)(6,118,18,130,104)(7,119,19,131,97)(8,120,20,132,98)(9,49,93,81,124)(10,50,94,82,125)(11,51,95,83,126)(12,52,96,84,127)(13,53,89,85,128)(14,54,90,86,121)(15,55,91,87,122)(16,56,92,88,123)(25,70,107,146,137)(26,71,108,147,138)(27,72,109,148,139)(28,65,110,149,140)(29,66,111,150,141)(30,67,112,151,142)(31,68,105,152,143)(32,69,106,145,144)(33,74,58,160,45)(34,75,59,153,46)(35,76,60,154,47)(36,77,61,155,48)(37,78,62,156,41)(38,79,63,157,42)(39,80,64,158,43)(40,73,57,159,44), (1,103)(2,104)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,21)(18,22)(19,23)(20,24)(25,150)(26,151)(27,152)(28,145)(29,146)(30,147)(31,148)(32,149)(33,37)(34,38)(35,39)(36,40)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,73)(57,155)(58,156)(59,157)(60,158)(61,159)(62,160)(63,153)(64,154)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,105)(81,85)(82,86)(83,87)(84,88)(89,124)(90,125)(91,126)(92,127)(93,128)(94,121)(95,122)(96,123)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136)(137,141)(138,142)(139,143)(140,144), (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,111)(8,112)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,139)(18,140)(19,141)(20,142)(21,143)(22,144)(23,137)(24,138)(25,135)(26,136)(27,129)(28,130)(29,131)(30,132)(31,133)(32,134)(33,84)(34,85)(35,86)(36,87)(37,88)(38,81)(39,82)(40,83)(41,92)(42,93)(43,94)(44,95)(45,96)(46,89)(47,90)(48,91)(49,157)(50,158)(51,159)(52,160)(53,153)(54,154)(55,155)(56,156)(65,104)(66,97)(67,98)(68,99)(69,100)(70,101)(71,102)(72,103)(73,126)(74,127)(75,128)(76,121)(77,122)(78,123)(79,124)(80,125)(113,152)(114,145)(115,146)(116,147)(117,148)(118,149)(119,150)(120,151), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,54,105,154)(2,53,106,153)(3,52,107,160)(4,51,108,159)(5,50,109,158)(6,49,110,157)(7,56,111,156)(8,55,112,155)(9,65,63,104)(10,72,64,103)(11,71,57,102)(12,70,58,101)(13,69,59,100)(14,68,60,99)(15,67,61,98)(16,66,62,97)(17,82,139,39)(18,81,140,38)(19,88,141,37)(20,87,142,36)(21,86,143,35)(22,85,144,34)(23,84,137,33)(24,83,138,40)(25,74,135,127)(26,73,136,126)(27,80,129,125)(28,79,130,124)(29,78,131,123)(30,77,132,122)(31,76,133,121)(32,75,134,128)(41,119,92,150)(42,118,93,149)(43,117,94,148)(44,116,95,147)(45,115,96,146)(46,114,89,145)(47,113,90,152)(48,120,91,151)>;

G:=Group( (1,113,21,133,99)(2,114,22,134,100)(3,115,23,135,101)(4,116,24,136,102)(5,117,17,129,103)(6,118,18,130,104)(7,119,19,131,97)(8,120,20,132,98)(9,49,93,81,124)(10,50,94,82,125)(11,51,95,83,126)(12,52,96,84,127)(13,53,89,85,128)(14,54,90,86,121)(15,55,91,87,122)(16,56,92,88,123)(25,70,107,146,137)(26,71,108,147,138)(27,72,109,148,139)(28,65,110,149,140)(29,66,111,150,141)(30,67,112,151,142)(31,68,105,152,143)(32,69,106,145,144)(33,74,58,160,45)(34,75,59,153,46)(35,76,60,154,47)(36,77,61,155,48)(37,78,62,156,41)(38,79,63,157,42)(39,80,64,158,43)(40,73,57,159,44), (1,103)(2,104)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,21)(18,22)(19,23)(20,24)(25,150)(26,151)(27,152)(28,145)(29,146)(30,147)(31,148)(32,149)(33,37)(34,38)(35,39)(36,40)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,73)(57,155)(58,156)(59,157)(60,158)(61,159)(62,160)(63,153)(64,154)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,105)(81,85)(82,86)(83,87)(84,88)(89,124)(90,125)(91,126)(92,127)(93,128)(94,121)(95,122)(96,123)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136)(137,141)(138,142)(139,143)(140,144), (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,111)(8,112)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,139)(18,140)(19,141)(20,142)(21,143)(22,144)(23,137)(24,138)(25,135)(26,136)(27,129)(28,130)(29,131)(30,132)(31,133)(32,134)(33,84)(34,85)(35,86)(36,87)(37,88)(38,81)(39,82)(40,83)(41,92)(42,93)(43,94)(44,95)(45,96)(46,89)(47,90)(48,91)(49,157)(50,158)(51,159)(52,160)(53,153)(54,154)(55,155)(56,156)(65,104)(66,97)(67,98)(68,99)(69,100)(70,101)(71,102)(72,103)(73,126)(74,127)(75,128)(76,121)(77,122)(78,123)(79,124)(80,125)(113,152)(114,145)(115,146)(116,147)(117,148)(118,149)(119,150)(120,151), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,54,105,154)(2,53,106,153)(3,52,107,160)(4,51,108,159)(5,50,109,158)(6,49,110,157)(7,56,111,156)(8,55,112,155)(9,65,63,104)(10,72,64,103)(11,71,57,102)(12,70,58,101)(13,69,59,100)(14,68,60,99)(15,67,61,98)(16,66,62,97)(17,82,139,39)(18,81,140,38)(19,88,141,37)(20,87,142,36)(21,86,143,35)(22,85,144,34)(23,84,137,33)(24,83,138,40)(25,74,135,127)(26,73,136,126)(27,80,129,125)(28,79,130,124)(29,78,131,123)(30,77,132,122)(31,76,133,121)(32,75,134,128)(41,119,92,150)(42,118,93,149)(43,117,94,148)(44,116,95,147)(45,115,96,146)(46,114,89,145)(47,113,90,152)(48,120,91,151) );

G=PermutationGroup([[(1,113,21,133,99),(2,114,22,134,100),(3,115,23,135,101),(4,116,24,136,102),(5,117,17,129,103),(6,118,18,130,104),(7,119,19,131,97),(8,120,20,132,98),(9,49,93,81,124),(10,50,94,82,125),(11,51,95,83,126),(12,52,96,84,127),(13,53,89,85,128),(14,54,90,86,121),(15,55,91,87,122),(16,56,92,88,123),(25,70,107,146,137),(26,71,108,147,138),(27,72,109,148,139),(28,65,110,149,140),(29,66,111,150,141),(30,67,112,151,142),(31,68,105,152,143),(32,69,106,145,144),(33,74,58,160,45),(34,75,59,153,46),(35,76,60,154,47),(36,77,61,155,48),(37,78,62,156,41),(38,79,63,157,42),(39,80,64,158,43),(40,73,57,159,44)], [(1,103),(2,104),(3,97),(4,98),(5,99),(6,100),(7,101),(8,102),(9,53),(10,54),(11,55),(12,56),(13,49),(14,50),(15,51),(16,52),(17,21),(18,22),(19,23),(20,24),(25,150),(26,151),(27,152),(28,145),(29,146),(30,147),(31,148),(32,149),(33,37),(34,38),(35,39),(36,40),(41,74),(42,75),(43,76),(44,77),(45,78),(46,79),(47,80),(48,73),(57,155),(58,156),(59,157),(60,158),(61,159),(62,160),(63,153),(64,154),(65,106),(66,107),(67,108),(68,109),(69,110),(70,111),(71,112),(72,105),(81,85),(82,86),(83,87),(84,88),(89,124),(90,125),(91,126),(92,127),(93,128),(94,121),(95,122),(96,123),(113,129),(114,130),(115,131),(116,132),(117,133),(118,134),(119,135),(120,136),(137,141),(138,142),(139,143),(140,144)], [(1,105),(2,106),(3,107),(4,108),(5,109),(6,110),(7,111),(8,112),(9,63),(10,64),(11,57),(12,58),(13,59),(14,60),(15,61),(16,62),(17,139),(18,140),(19,141),(20,142),(21,143),(22,144),(23,137),(24,138),(25,135),(26,136),(27,129),(28,130),(29,131),(30,132),(31,133),(32,134),(33,84),(34,85),(35,86),(36,87),(37,88),(38,81),(39,82),(40,83),(41,92),(42,93),(43,94),(44,95),(45,96),(46,89),(47,90),(48,91),(49,157),(50,158),(51,159),(52,160),(53,153),(54,154),(55,155),(56,156),(65,104),(66,97),(67,98),(68,99),(69,100),(70,101),(71,102),(72,103),(73,126),(74,127),(75,128),(76,121),(77,122),(78,123),(79,124),(80,125),(113,152),(114,145),(115,146),(116,147),(117,148),(118,149),(119,150),(120,151)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,54,105,154),(2,53,106,153),(3,52,107,160),(4,51,108,159),(5,50,109,158),(6,49,110,157),(7,56,111,156),(8,55,112,155),(9,65,63,104),(10,72,64,103),(11,71,57,102),(12,70,58,101),(13,69,59,100),(14,68,60,99),(15,67,61,98),(16,66,62,97),(17,82,139,39),(18,81,140,38),(19,88,141,37),(20,87,142,36),(21,86,143,35),(22,85,144,34),(23,84,137,33),(24,83,138,40),(25,74,135,127),(26,73,136,126),(27,80,129,125),(28,79,130,124),(29,78,131,123),(30,77,132,122),(31,76,133,121),(32,75,134,128),(41,119,92,150),(42,118,93,149),(43,117,94,148),(44,116,95,147),(45,115,96,146),(46,114,89,145),(47,113,90,152),(48,120,91,151)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A8B8C8D8E8F8G8H10A···10F20A20B20C20D20E···20L40A···40H
order12222222444444444444558888888810···102020202020···2040···40
size11115555224444101020202020222222101010102···244448···84···4

56 irreducible representations

dim11111112222222224444
type++++++-++++-++-++-
imageC1C2C2C2C2C2C4Q8D4D4D5D8Q16D10D10C4×D5Q8×D5D4×D5D5×D8D5×Q16
kernelD5×C2.D8C10.D8C405C4C5×C2.D8D5×C4⋊C4D5×C2×C8C8×D5C4×D5C2×Dic5C22×D5C2.D8D10D10C4⋊C4C2×C8C8C4C22C2C2
# reps12112182112444282244

Matrix representation of D5×C2.D8 in GL5(𝔽41)

10000
040100
033700
00010
00001
,
400000
040000
033100
000400
000040
,
400000
01000
00100
000400
000040
,
10000
040000
004000
0002912
0002929
,
320000
040000
004000
0001434
0003427

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,40,33,0,0,0,1,7,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,40,33,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,29,29,0,0,0,12,29],[32,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,14,34,0,0,0,34,27] >;

D5×C2.D8 in GAP, Magma, Sage, TeX

D_5\times C_2.D_8
% in TeX

G:=Group("D5xC2.D8");
// GroupNames label

G:=SmallGroup(320,506);
// by ID

G=gap.SmallGroup(320,506);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,58,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^2=d^8=1,e^2=c,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽