metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20.11D4, Dic5⋊2SD16, C4.96(D4×D5), C4⋊C4.156D10, Q8⋊C4⋊14D5, C4.7(C4○D20), C20.128(C2×D4), (C2×C8).126D10, C5⋊1(D4.D4), (C2×Q8).23D10, C2.19(D5×SD16), Dic5⋊Q8⋊2C2, D20⋊8C4.3C2, C20.23(C4○D4), C10.Q16⋊13C2, C20.8Q8⋊14C2, (C2×Dic5).43D4, C10.33(C2×SD16), C22.207(D4×D5), C10.27(C4⋊D4), (C2×C40).137C22, (C2×C20).258C23, (C2×D20).72C22, (Q8×C10).41C22, C2.30(D10⋊D4), C2.19(Q16⋊D5), C10.66(C8.C22), (C4×Dic5).31C22, (C2×Dic10).79C22, (C2×Q8⋊D5).3C2, (C2×C40⋊C2).4C2, (C5×Q8⋊C4)⋊14C2, (C2×C10).271(C2×D4), (C5×C4⋊C4).59C22, (C2×C5⋊2C8).48C22, (C2×C4).365(C22×D5), SmallGroup(320,445)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C22 — C2×C4 — Q8⋊C4 |
Generators and relations for Dic5⋊SD16
G = < a,b,c,d | a10=c8=d2=1, b2=a5, bab-1=cac-1=dad=a-1, cbc-1=a5b, bd=db, dcd=c3 >
Subgroups: 534 in 120 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, D10, C2×C10, Q8⋊C4, Q8⋊C4, C4⋊C8, C4×D4, C4⋊Q8, C2×SD16, C5⋊2C8, C40, Dic10, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, D4.D4, C40⋊C2, C2×C5⋊2C8, C4×Dic5, C10.D4, D10⋊C4, Q8⋊D5, C5×C4⋊C4, C2×C40, C2×Dic10, C2×C4×D5, C2×D20, Q8×C10, C10.Q16, C20.8Q8, C5×Q8⋊C4, D20⋊8C4, C2×C40⋊C2, C2×Q8⋊D5, Dic5⋊Q8, Dic5⋊SD16
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C4⋊D4, C2×SD16, C8.C22, C22×D5, D4.D4, C4○D20, D4×D5, D10⋊D4, D5×SD16, Q16⋊D5, Dic5⋊SD16
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 93 6 98)(2 92 7 97)(3 91 8 96)(4 100 9 95)(5 99 10 94)(11 124 16 129)(12 123 17 128)(13 122 18 127)(14 121 19 126)(15 130 20 125)(21 77 26 72)(22 76 27 71)(23 75 28 80)(24 74 29 79)(25 73 30 78)(31 112 36 117)(32 111 37 116)(33 120 38 115)(34 119 39 114)(35 118 40 113)(41 106 46 101)(42 105 47 110)(43 104 48 109)(44 103 49 108)(45 102 50 107)(51 141 56 146)(52 150 57 145)(53 149 58 144)(54 148 59 143)(55 147 60 142)(61 131 66 136)(62 140 67 135)(63 139 68 134)(64 138 69 133)(65 137 70 132)(81 156 86 151)(82 155 87 160)(83 154 88 159)(84 153 89 158)(85 152 90 157)
(1 83 17 79 39 69 43 58)(2 82 18 78 40 68 44 57)(3 81 19 77 31 67 45 56)(4 90 20 76 32 66 46 55)(5 89 11 75 33 65 47 54)(6 88 12 74 34 64 48 53)(7 87 13 73 35 63 49 52)(8 86 14 72 36 62 50 51)(9 85 15 71 37 61 41 60)(10 84 16 80 38 70 42 59)(21 112 140 102 141 91 151 126)(22 111 131 101 142 100 152 125)(23 120 132 110 143 99 153 124)(24 119 133 109 144 98 154 123)(25 118 134 108 145 97 155 122)(26 117 135 107 146 96 156 121)(27 116 136 106 147 95 157 130)(28 115 137 105 148 94 158 129)(29 114 138 104 149 93 159 128)(30 113 139 103 150 92 160 127)
(2 10)(3 9)(4 8)(5 7)(11 49)(12 48)(13 47)(14 46)(15 45)(16 44)(17 43)(18 42)(19 41)(20 50)(21 157)(22 156)(23 155)(24 154)(25 153)(26 152)(27 151)(28 160)(29 159)(30 158)(31 37)(32 36)(33 35)(38 40)(51 66)(52 65)(53 64)(54 63)(55 62)(56 61)(57 70)(58 69)(59 68)(60 67)(71 81)(72 90)(73 89)(74 88)(75 87)(76 86)(77 85)(78 84)(79 83)(80 82)(91 95)(92 94)(96 100)(97 99)(101 121)(102 130)(103 129)(104 128)(105 127)(106 126)(107 125)(108 124)(109 123)(110 122)(111 117)(112 116)(113 115)(118 120)(131 146)(132 145)(133 144)(134 143)(135 142)(136 141)(137 150)(138 149)(139 148)(140 147)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,93,6,98)(2,92,7,97)(3,91,8,96)(4,100,9,95)(5,99,10,94)(11,124,16,129)(12,123,17,128)(13,122,18,127)(14,121,19,126)(15,130,20,125)(21,77,26,72)(22,76,27,71)(23,75,28,80)(24,74,29,79)(25,73,30,78)(31,112,36,117)(32,111,37,116)(33,120,38,115)(34,119,39,114)(35,118,40,113)(41,106,46,101)(42,105,47,110)(43,104,48,109)(44,103,49,108)(45,102,50,107)(51,141,56,146)(52,150,57,145)(53,149,58,144)(54,148,59,143)(55,147,60,142)(61,131,66,136)(62,140,67,135)(63,139,68,134)(64,138,69,133)(65,137,70,132)(81,156,86,151)(82,155,87,160)(83,154,88,159)(84,153,89,158)(85,152,90,157), (1,83,17,79,39,69,43,58)(2,82,18,78,40,68,44,57)(3,81,19,77,31,67,45,56)(4,90,20,76,32,66,46,55)(5,89,11,75,33,65,47,54)(6,88,12,74,34,64,48,53)(7,87,13,73,35,63,49,52)(8,86,14,72,36,62,50,51)(9,85,15,71,37,61,41,60)(10,84,16,80,38,70,42,59)(21,112,140,102,141,91,151,126)(22,111,131,101,142,100,152,125)(23,120,132,110,143,99,153,124)(24,119,133,109,144,98,154,123)(25,118,134,108,145,97,155,122)(26,117,135,107,146,96,156,121)(27,116,136,106,147,95,157,130)(28,115,137,105,148,94,158,129)(29,114,138,104,149,93,159,128)(30,113,139,103,150,92,160,127), (2,10)(3,9)(4,8)(5,7)(11,49)(12,48)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,50)(21,157)(22,156)(23,155)(24,154)(25,153)(26,152)(27,151)(28,160)(29,159)(30,158)(31,37)(32,36)(33,35)(38,40)(51,66)(52,65)(53,64)(54,63)(55,62)(56,61)(57,70)(58,69)(59,68)(60,67)(71,81)(72,90)(73,89)(74,88)(75,87)(76,86)(77,85)(78,84)(79,83)(80,82)(91,95)(92,94)(96,100)(97,99)(101,121)(102,130)(103,129)(104,128)(105,127)(106,126)(107,125)(108,124)(109,123)(110,122)(111,117)(112,116)(113,115)(118,120)(131,146)(132,145)(133,144)(134,143)(135,142)(136,141)(137,150)(138,149)(139,148)(140,147)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,93,6,98)(2,92,7,97)(3,91,8,96)(4,100,9,95)(5,99,10,94)(11,124,16,129)(12,123,17,128)(13,122,18,127)(14,121,19,126)(15,130,20,125)(21,77,26,72)(22,76,27,71)(23,75,28,80)(24,74,29,79)(25,73,30,78)(31,112,36,117)(32,111,37,116)(33,120,38,115)(34,119,39,114)(35,118,40,113)(41,106,46,101)(42,105,47,110)(43,104,48,109)(44,103,49,108)(45,102,50,107)(51,141,56,146)(52,150,57,145)(53,149,58,144)(54,148,59,143)(55,147,60,142)(61,131,66,136)(62,140,67,135)(63,139,68,134)(64,138,69,133)(65,137,70,132)(81,156,86,151)(82,155,87,160)(83,154,88,159)(84,153,89,158)(85,152,90,157), (1,83,17,79,39,69,43,58)(2,82,18,78,40,68,44,57)(3,81,19,77,31,67,45,56)(4,90,20,76,32,66,46,55)(5,89,11,75,33,65,47,54)(6,88,12,74,34,64,48,53)(7,87,13,73,35,63,49,52)(8,86,14,72,36,62,50,51)(9,85,15,71,37,61,41,60)(10,84,16,80,38,70,42,59)(21,112,140,102,141,91,151,126)(22,111,131,101,142,100,152,125)(23,120,132,110,143,99,153,124)(24,119,133,109,144,98,154,123)(25,118,134,108,145,97,155,122)(26,117,135,107,146,96,156,121)(27,116,136,106,147,95,157,130)(28,115,137,105,148,94,158,129)(29,114,138,104,149,93,159,128)(30,113,139,103,150,92,160,127), (2,10)(3,9)(4,8)(5,7)(11,49)(12,48)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,50)(21,157)(22,156)(23,155)(24,154)(25,153)(26,152)(27,151)(28,160)(29,159)(30,158)(31,37)(32,36)(33,35)(38,40)(51,66)(52,65)(53,64)(54,63)(55,62)(56,61)(57,70)(58,69)(59,68)(60,67)(71,81)(72,90)(73,89)(74,88)(75,87)(76,86)(77,85)(78,84)(79,83)(80,82)(91,95)(92,94)(96,100)(97,99)(101,121)(102,130)(103,129)(104,128)(105,127)(106,126)(107,125)(108,124)(109,123)(110,122)(111,117)(112,116)(113,115)(118,120)(131,146)(132,145)(133,144)(134,143)(135,142)(136,141)(137,150)(138,149)(139,148)(140,147) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,93,6,98),(2,92,7,97),(3,91,8,96),(4,100,9,95),(5,99,10,94),(11,124,16,129),(12,123,17,128),(13,122,18,127),(14,121,19,126),(15,130,20,125),(21,77,26,72),(22,76,27,71),(23,75,28,80),(24,74,29,79),(25,73,30,78),(31,112,36,117),(32,111,37,116),(33,120,38,115),(34,119,39,114),(35,118,40,113),(41,106,46,101),(42,105,47,110),(43,104,48,109),(44,103,49,108),(45,102,50,107),(51,141,56,146),(52,150,57,145),(53,149,58,144),(54,148,59,143),(55,147,60,142),(61,131,66,136),(62,140,67,135),(63,139,68,134),(64,138,69,133),(65,137,70,132),(81,156,86,151),(82,155,87,160),(83,154,88,159),(84,153,89,158),(85,152,90,157)], [(1,83,17,79,39,69,43,58),(2,82,18,78,40,68,44,57),(3,81,19,77,31,67,45,56),(4,90,20,76,32,66,46,55),(5,89,11,75,33,65,47,54),(6,88,12,74,34,64,48,53),(7,87,13,73,35,63,49,52),(8,86,14,72,36,62,50,51),(9,85,15,71,37,61,41,60),(10,84,16,80,38,70,42,59),(21,112,140,102,141,91,151,126),(22,111,131,101,142,100,152,125),(23,120,132,110,143,99,153,124),(24,119,133,109,144,98,154,123),(25,118,134,108,145,97,155,122),(26,117,135,107,146,96,156,121),(27,116,136,106,147,95,157,130),(28,115,137,105,148,94,158,129),(29,114,138,104,149,93,159,128),(30,113,139,103,150,92,160,127)], [(2,10),(3,9),(4,8),(5,7),(11,49),(12,48),(13,47),(14,46),(15,45),(16,44),(17,43),(18,42),(19,41),(20,50),(21,157),(22,156),(23,155),(24,154),(25,153),(26,152),(27,151),(28,160),(29,159),(30,158),(31,37),(32,36),(33,35),(38,40),(51,66),(52,65),(53,64),(54,63),(55,62),(56,61),(57,70),(58,69),(59,68),(60,67),(71,81),(72,90),(73,89),(74,88),(75,87),(76,86),(77,85),(78,84),(79,83),(80,82),(91,95),(92,94),(96,100),(97,99),(101,121),(102,130),(103,129),(104,128),(105,127),(106,126),(107,125),(108,124),(109,123),(110,122),(111,117),(112,116),(113,115),(118,120),(131,146),(132,145),(133,144),(134,143),(135,142),(136,141),(137,150),(138,149),(139,148),(140,147)]])
47 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 20A | 20B | 20C | 20D | 20E | ··· | 20L | 40A | ··· | 40H |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
| size | 1 | 1 | 1 | 1 | 20 | 20 | 2 | 2 | 4 | 4 | 8 | 10 | 10 | 20 | 40 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
47 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | |||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | SD16 | C4○D4 | D10 | D10 | D10 | C4○D20 | C8.C22 | D4×D5 | D4×D5 | D5×SD16 | Q16⋊D5 |
| kernel | Dic5⋊SD16 | C10.Q16 | C20.8Q8 | C5×Q8⋊C4 | D20⋊8C4 | C2×C40⋊C2 | C2×Q8⋊D5 | Dic5⋊Q8 | D20 | C2×Dic5 | Q8⋊C4 | Dic5 | C20 | C4⋊C4 | C2×C8 | C2×Q8 | C4 | C10 | C4 | C22 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 8 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of Dic5⋊SD16 ►in GL4(𝔽41) generated by
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 35 | 40 |
| 0 | 0 | 1 | 0 |
| 40 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 |
| 0 | 0 | 13 | 28 |
| 0 | 0 | 32 | 28 |
| 0 | 17 | 0 | 0 |
| 29 | 30 | 0 | 0 |
| 0 | 0 | 21 | 21 |
| 0 | 0 | 18 | 20 |
| 1 | 18 | 0 | 0 |
| 0 | 40 | 0 | 0 |
| 0 | 0 | 6 | 35 |
| 0 | 0 | 40 | 35 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,35,1,0,0,40,0],[40,0,0,0,0,40,0,0,0,0,13,32,0,0,28,28],[0,29,0,0,17,30,0,0,0,0,21,18,0,0,21,20],[1,0,0,0,18,40,0,0,0,0,6,40,0,0,35,35] >;
Dic5⋊SD16 in GAP, Magma, Sage, TeX
{\rm Dic}_5\rtimes {\rm SD}_{16} % in TeX
G:=Group("Dic5:SD16"); // GroupNames label
G:=SmallGroup(320,445);
// by ID
G=gap.SmallGroup(320,445);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,64,590,219,184,1684,851,438,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^10=c^8=d^2=1,b^2=a^5,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^5*b,b*d=d*b,d*c*d=c^3>;
// generators/relations