Copied to
clipboard

G = D2017D4order 320 = 26·5

5th semidirect product of D20 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2017D4, Dic1016D4, C4⋊D42D5, C4.99(D4×D5), C54(D4⋊D4), C4⋊C4.57D10, (C2×D4).37D10, C20.146(C2×D4), (C2×C20).262D4, D206C434C2, C10.45C22≀C2, C10.96(C4○D8), C10.Q1633C2, (C22×C10).83D4, C20.55D411C2, C10.90(C8⋊C22), (C2×C20).356C23, (D4×C10).53C22, (C22×C4).120D10, C23.23(C5⋊D4), C2.13(C23⋊D10), (C2×D20).249C22, C2.15(D4.8D10), C2.11(D4.D10), (C22×C20).160C22, (C2×Dic10).276C22, (C2×D4⋊D5)⋊9C2, (C5×C4⋊D4)⋊2C2, (C2×D4.D5)⋊8C2, (C2×C4○D20)⋊15C2, (C2×C10).487(C2×D4), (C2×C4).171(C5⋊D4), (C5×C4⋊C4).104C22, (C2×C4).456(C22×D5), C22.162(C2×C5⋊D4), (C2×C52C8).108C22, SmallGroup(320,664)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D2017D4
C1C5C10C20C2×C20C2×D20C2×C4○D20 — D2017D4
C5C10C2×C20 — D2017D4
C1C22C22×C4C4⋊D4

Generators and relations for D2017D4
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=a-1, cac-1=a11, ad=da, cbc-1=a5b, dbd=a10b, dcd=c-1 >

Subgroups: 670 in 162 conjugacy classes, 43 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, C52C8, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22×C10, D4⋊D4, C2×C52C8, D4⋊D5, D4.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C22×C20, D4×C10, D4×C10, D206C4, C10.Q16, C20.55D4, C2×D4⋊D5, C2×D4.D5, C5×C4⋊D4, C2×C4○D20, D2017D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, C4○D8, C8⋊C22, C5⋊D4, C22×D5, D4⋊D4, D4×D5, C2×C5⋊D4, D4.D10, C23⋊D10, D4.8D10, D2017D4

Smallest permutation representation of D2017D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 30)(22 29)(23 28)(24 27)(25 26)(31 40)(32 39)(33 38)(34 37)(35 36)(41 46)(42 45)(43 44)(47 60)(48 59)(49 58)(50 57)(51 56)(52 55)(53 54)(61 71)(62 70)(63 69)(64 68)(65 67)(72 80)(73 79)(74 78)(75 77)(81 97)(82 96)(83 95)(84 94)(85 93)(86 92)(87 91)(88 90)(98 100)(101 103)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)(121 134)(122 133)(123 132)(124 131)(125 130)(126 129)(127 128)(135 140)(136 139)(137 138)(141 159)(142 158)(143 157)(144 156)(145 155)(146 154)(147 153)(148 152)(149 151)
(1 92 36 105)(2 83 37 116)(3 94 38 107)(4 85 39 118)(5 96 40 109)(6 87 21 120)(7 98 22 111)(8 89 23 102)(9 100 24 113)(10 91 25 104)(11 82 26 115)(12 93 27 106)(13 84 28 117)(14 95 29 108)(15 86 30 119)(16 97 31 110)(17 88 32 101)(18 99 33 112)(19 90 34 103)(20 81 35 114)(41 76 135 150)(42 67 136 141)(43 78 137 152)(44 69 138 143)(45 80 139 154)(46 71 140 145)(47 62 121 156)(48 73 122 147)(49 64 123 158)(50 75 124 149)(51 66 125 160)(52 77 126 151)(53 68 127 142)(54 79 128 153)(55 70 129 144)(56 61 130 155)(57 72 131 146)(58 63 132 157)(59 74 133 148)(60 65 134 159)
(1 123)(2 124)(3 125)(4 126)(5 127)(6 128)(7 129)(8 130)(9 131)(10 132)(11 133)(12 134)(13 135)(14 136)(15 137)(16 138)(17 139)(18 140)(19 121)(20 122)(21 54)(22 55)(23 56)(24 57)(25 58)(26 59)(27 60)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)(40 53)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 81)(74 82)(75 83)(76 84)(77 85)(78 86)(79 87)(80 88)(101 154)(102 155)(103 156)(104 157)(105 158)(106 159)(107 160)(108 141)(109 142)(110 143)(111 144)(112 145)(113 146)(114 147)(115 148)(116 149)(117 150)(118 151)(119 152)(120 153)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,30)(22,29)(23,28)(24,27)(25,26)(31,40)(32,39)(33,38)(34,37)(35,36)(41,46)(42,45)(43,44)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54)(61,71)(62,70)(63,69)(64,68)(65,67)(72,80)(73,79)(74,78)(75,77)(81,97)(82,96)(83,95)(84,94)(85,93)(86,92)(87,91)(88,90)(98,100)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(121,134)(122,133)(123,132)(124,131)(125,130)(126,129)(127,128)(135,140)(136,139)(137,138)(141,159)(142,158)(143,157)(144,156)(145,155)(146,154)(147,153)(148,152)(149,151), (1,92,36,105)(2,83,37,116)(3,94,38,107)(4,85,39,118)(5,96,40,109)(6,87,21,120)(7,98,22,111)(8,89,23,102)(9,100,24,113)(10,91,25,104)(11,82,26,115)(12,93,27,106)(13,84,28,117)(14,95,29,108)(15,86,30,119)(16,97,31,110)(17,88,32,101)(18,99,33,112)(19,90,34,103)(20,81,35,114)(41,76,135,150)(42,67,136,141)(43,78,137,152)(44,69,138,143)(45,80,139,154)(46,71,140,145)(47,62,121,156)(48,73,122,147)(49,64,123,158)(50,75,124,149)(51,66,125,160)(52,77,126,151)(53,68,127,142)(54,79,128,153)(55,70,129,144)(56,61,130,155)(57,72,131,146)(58,63,132,157)(59,74,133,148)(60,65,134,159), (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,133)(12,134)(13,135)(14,136)(15,137)(16,138)(17,139)(18,140)(19,121)(20,122)(21,54)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(40,53)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88)(101,154)(102,155)(103,156)(104,157)(105,158)(106,159)(107,160)(108,141)(109,142)(110,143)(111,144)(112,145)(113,146)(114,147)(115,148)(116,149)(117,150)(118,151)(119,152)(120,153)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,30)(22,29)(23,28)(24,27)(25,26)(31,40)(32,39)(33,38)(34,37)(35,36)(41,46)(42,45)(43,44)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54)(61,71)(62,70)(63,69)(64,68)(65,67)(72,80)(73,79)(74,78)(75,77)(81,97)(82,96)(83,95)(84,94)(85,93)(86,92)(87,91)(88,90)(98,100)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(121,134)(122,133)(123,132)(124,131)(125,130)(126,129)(127,128)(135,140)(136,139)(137,138)(141,159)(142,158)(143,157)(144,156)(145,155)(146,154)(147,153)(148,152)(149,151), (1,92,36,105)(2,83,37,116)(3,94,38,107)(4,85,39,118)(5,96,40,109)(6,87,21,120)(7,98,22,111)(8,89,23,102)(9,100,24,113)(10,91,25,104)(11,82,26,115)(12,93,27,106)(13,84,28,117)(14,95,29,108)(15,86,30,119)(16,97,31,110)(17,88,32,101)(18,99,33,112)(19,90,34,103)(20,81,35,114)(41,76,135,150)(42,67,136,141)(43,78,137,152)(44,69,138,143)(45,80,139,154)(46,71,140,145)(47,62,121,156)(48,73,122,147)(49,64,123,158)(50,75,124,149)(51,66,125,160)(52,77,126,151)(53,68,127,142)(54,79,128,153)(55,70,129,144)(56,61,130,155)(57,72,131,146)(58,63,132,157)(59,74,133,148)(60,65,134,159), (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,133)(12,134)(13,135)(14,136)(15,137)(16,138)(17,139)(18,140)(19,121)(20,122)(21,54)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(40,53)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88)(101,154)(102,155)(103,156)(104,157)(105,158)(106,159)(107,160)(108,141)(109,142)(110,143)(111,144)(112,145)(113,146)(114,147)(115,148)(116,149)(117,150)(118,151)(119,152)(120,153) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,30),(22,29),(23,28),(24,27),(25,26),(31,40),(32,39),(33,38),(34,37),(35,36),(41,46),(42,45),(43,44),(47,60),(48,59),(49,58),(50,57),(51,56),(52,55),(53,54),(61,71),(62,70),(63,69),(64,68),(65,67),(72,80),(73,79),(74,78),(75,77),(81,97),(82,96),(83,95),(84,94),(85,93),(86,92),(87,91),(88,90),(98,100),(101,103),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113),(121,134),(122,133),(123,132),(124,131),(125,130),(126,129),(127,128),(135,140),(136,139),(137,138),(141,159),(142,158),(143,157),(144,156),(145,155),(146,154),(147,153),(148,152),(149,151)], [(1,92,36,105),(2,83,37,116),(3,94,38,107),(4,85,39,118),(5,96,40,109),(6,87,21,120),(7,98,22,111),(8,89,23,102),(9,100,24,113),(10,91,25,104),(11,82,26,115),(12,93,27,106),(13,84,28,117),(14,95,29,108),(15,86,30,119),(16,97,31,110),(17,88,32,101),(18,99,33,112),(19,90,34,103),(20,81,35,114),(41,76,135,150),(42,67,136,141),(43,78,137,152),(44,69,138,143),(45,80,139,154),(46,71,140,145),(47,62,121,156),(48,73,122,147),(49,64,123,158),(50,75,124,149),(51,66,125,160),(52,77,126,151),(53,68,127,142),(54,79,128,153),(55,70,129,144),(56,61,130,155),(57,72,131,146),(58,63,132,157),(59,74,133,148),(60,65,134,159)], [(1,123),(2,124),(3,125),(4,126),(5,127),(6,128),(7,129),(8,130),(9,131),(10,132),(11,133),(12,134),(13,135),(14,136),(15,137),(16,138),(17,139),(18,140),(19,121),(20,122),(21,54),(22,55),(23,56),(24,57),(25,58),(26,59),(27,60),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52),(40,53),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,81),(74,82),(75,83),(76,84),(77,85),(78,86),(79,87),(80,88),(101,154),(102,155),(103,156),(104,157),(105,158),(106,159),(107,160),(108,141),(109,142),(110,143),(111,144),(112,145),(113,146),(114,147),(115,148),(116,149),(117,150),(118,151),(119,152),(120,153)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G5A5B8A8B8C8D10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order12222222444444455888810···10101010101010101020···2020202020
size111148202022228202022202020202···2444488884···48888

47 irreducible representations

dim11111111222222222224444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D4D5D10D10D10C4○D8C5⋊D4C5⋊D4C8⋊C22D4×D5D4.D10D4.8D10
kernelD2017D4D206C4C10.Q16C20.55D4C2×D4⋊D5C2×D4.D5C5×C4⋊D4C2×C4○D20Dic10D20C2×C20C22×C10C4⋊D4C4⋊C4C22×C4C2×D4C10C2×C4C23C10C4C2C2
# reps11111111221122224441444

Matrix representation of D2017D4 in GL6(𝔽41)

4000000
0400000
0035100
0054000
0000121
00003740
,
4000000
3910000
00404000
000100
0000121
0000040
,
9320000
0320000
0040000
0004000
0000013
0000220
,
100000
2400000
001000
000100
00003216
0000369

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,35,5,0,0,0,0,1,40,0,0,0,0,0,0,1,37,0,0,0,0,21,40],[40,39,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,21,40],[9,0,0,0,0,0,32,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,22,0,0,0,0,13,0],[1,2,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,36,0,0,0,0,16,9] >;

D2017D4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_{17}D_4
% in TeX

G:=Group("D20:17D4");
// GroupNames label

G:=SmallGroup(320,664);
// by ID

G=gap.SmallGroup(320,664);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,219,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=a^11,a*d=d*a,c*b*c^-1=a^5*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽