Copied to
clipboard

G = D4.1D20order 320 = 26·5

1st non-split extension by D4 of D20 acting via D20/C20=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.1D20, C42.50D10, (C4×D4)⋊4D5, (D4×C20)⋊4C2, C203C824C2, (C5×D4).18D4, C20.18(C2×D4), C4.14(C2×D20), (C2×C20).61D4, C4⋊C4.244D10, C54(D4.2D4), D206C431C2, (C2×D4).191D10, C4.10(C4○D20), C10.89(C4○D8), C20.51(C4○D4), C4.D2013C2, C10.Q1629C2, (C4×C20).87C22, C2.13(C207D4), C10.65(C4⋊D4), C10.87(C8⋊C22), (C2×C20).338C23, (C2×D20).98C22, C2.9(D4.D10), (D4×C10).233C22, C2.11(D4.8D10), (C2×Dic10).103C22, (C2×D4⋊D5).5C2, (C2×D4.D5)⋊7C2, (C2×C10).469(C2×D4), (C2×C4).218(C5⋊D4), (C5×C4⋊C4).275C22, (C2×C52C8).94C22, (C2×C4).438(C22×D5), C22.150(C2×C5⋊D4), SmallGroup(320,643)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D4.1D20
C1C5C10C20C2×C20C2×D20C4.D20 — D4.1D20
C5C10C2×C20 — D4.1D20
C1C22C42C4×D4

Generators and relations for D4.1D20
 G = < a,b,c,d | a4=b2=c20=1, d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c-1 >

Subgroups: 502 in 124 conjugacy classes, 43 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C4⋊C8, C4×D4, C4.4D4, C2×D8, C2×SD16, C52C8, Dic10, D20, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C22×D5, C22×C10, D4.2D4, C2×C52C8, D10⋊C4, D4⋊D5, D4.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×D20, C22×C20, D4×C10, C203C8, D206C4, C10.Q16, C4.D20, C2×D4⋊D5, C2×D4.D5, D4×C20, D4.1D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C4○D8, C8⋊C22, D20, C5⋊D4, C22×D5, D4.2D4, C2×D20, C4○D20, C2×C5⋊D4, C207D4, D4.D10, D4.8D10, D4.1D20

Smallest permutation representation of D4.1D20
On 160 points
Generators in S160
(1 139 141 104)(2 140 142 105)(3 121 143 106)(4 122 144 107)(5 123 145 108)(6 124 146 109)(7 125 147 110)(8 126 148 111)(9 127 149 112)(10 128 150 113)(11 129 151 114)(12 130 152 115)(13 131 153 116)(14 132 154 117)(15 133 155 118)(16 134 156 119)(17 135 157 120)(18 136 158 101)(19 137 159 102)(20 138 160 103)(21 81 64 45)(22 82 65 46)(23 83 66 47)(24 84 67 48)(25 85 68 49)(26 86 69 50)(27 87 70 51)(28 88 71 52)(29 89 72 53)(30 90 73 54)(31 91 74 55)(32 92 75 56)(33 93 76 57)(34 94 77 58)(35 95 78 59)(36 96 79 60)(37 97 80 41)(38 98 61 42)(39 99 62 43)(40 100 63 44)
(1 60)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 55)(17 56)(18 57)(19 58)(20 59)(21 109)(22 110)(23 111)(24 112)(25 113)(26 114)(27 115)(28 116)(29 117)(30 118)(31 119)(32 120)(33 101)(34 102)(35 103)(36 104)(37 105)(38 106)(39 107)(40 108)(61 121)(62 122)(63 123)(64 124)(65 125)(66 126)(67 127)(68 128)(69 129)(70 130)(71 131)(72 132)(73 133)(74 134)(75 135)(76 136)(77 137)(78 138)(79 139)(80 140)(81 146)(82 147)(83 148)(84 149)(85 150)(86 151)(87 152)(88 153)(89 154)(90 155)(91 156)(92 157)(93 158)(94 159)(95 160)(96 141)(97 142)(98 143)(99 144)(100 145)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 160 141 20)(2 19 142 159)(3 158 143 18)(4 17 144 157)(5 156 145 16)(6 15 146 155)(7 154 147 14)(8 13 148 153)(9 152 149 12)(10 11 150 151)(21 90 64 54)(22 53 65 89)(23 88 66 52)(24 51 67 87)(25 86 68 50)(26 49 69 85)(27 84 70 48)(28 47 71 83)(29 82 72 46)(30 45 73 81)(31 100 74 44)(32 43 75 99)(33 98 76 42)(34 41 77 97)(35 96 78 60)(36 59 79 95)(37 94 80 58)(38 57 61 93)(39 92 62 56)(40 55 63 91)(101 121 136 106)(102 105 137 140)(103 139 138 104)(107 135 122 120)(108 119 123 134)(109 133 124 118)(110 117 125 132)(111 131 126 116)(112 115 127 130)(113 129 128 114)

G:=sub<Sym(160)| (1,139,141,104)(2,140,142,105)(3,121,143,106)(4,122,144,107)(5,123,145,108)(6,124,146,109)(7,125,147,110)(8,126,148,111)(9,127,149,112)(10,128,150,113)(11,129,151,114)(12,130,152,115)(13,131,153,116)(14,132,154,117)(15,133,155,118)(16,134,156,119)(17,135,157,120)(18,136,158,101)(19,137,159,102)(20,138,160,103)(21,81,64,45)(22,82,65,46)(23,83,66,47)(24,84,67,48)(25,85,68,49)(26,86,69,50)(27,87,70,51)(28,88,71,52)(29,89,72,53)(30,90,73,54)(31,91,74,55)(32,92,75,56)(33,93,76,57)(34,94,77,58)(35,95,78,59)(36,96,79,60)(37,97,80,41)(38,98,61,42)(39,99,62,43)(40,100,63,44), (1,60)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,127)(68,128)(69,129)(70,130)(71,131)(72,132)(73,133)(74,134)(75,135)(76,136)(77,137)(78,138)(79,139)(80,140)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,153)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,141)(97,142)(98,143)(99,144)(100,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,160,141,20)(2,19,142,159)(3,158,143,18)(4,17,144,157)(5,156,145,16)(6,15,146,155)(7,154,147,14)(8,13,148,153)(9,152,149,12)(10,11,150,151)(21,90,64,54)(22,53,65,89)(23,88,66,52)(24,51,67,87)(25,86,68,50)(26,49,69,85)(27,84,70,48)(28,47,71,83)(29,82,72,46)(30,45,73,81)(31,100,74,44)(32,43,75,99)(33,98,76,42)(34,41,77,97)(35,96,78,60)(36,59,79,95)(37,94,80,58)(38,57,61,93)(39,92,62,56)(40,55,63,91)(101,121,136,106)(102,105,137,140)(103,139,138,104)(107,135,122,120)(108,119,123,134)(109,133,124,118)(110,117,125,132)(111,131,126,116)(112,115,127,130)(113,129,128,114)>;

G:=Group( (1,139,141,104)(2,140,142,105)(3,121,143,106)(4,122,144,107)(5,123,145,108)(6,124,146,109)(7,125,147,110)(8,126,148,111)(9,127,149,112)(10,128,150,113)(11,129,151,114)(12,130,152,115)(13,131,153,116)(14,132,154,117)(15,133,155,118)(16,134,156,119)(17,135,157,120)(18,136,158,101)(19,137,159,102)(20,138,160,103)(21,81,64,45)(22,82,65,46)(23,83,66,47)(24,84,67,48)(25,85,68,49)(26,86,69,50)(27,87,70,51)(28,88,71,52)(29,89,72,53)(30,90,73,54)(31,91,74,55)(32,92,75,56)(33,93,76,57)(34,94,77,58)(35,95,78,59)(36,96,79,60)(37,97,80,41)(38,98,61,42)(39,99,62,43)(40,100,63,44), (1,60)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,127)(68,128)(69,129)(70,130)(71,131)(72,132)(73,133)(74,134)(75,135)(76,136)(77,137)(78,138)(79,139)(80,140)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,153)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,141)(97,142)(98,143)(99,144)(100,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,160,141,20)(2,19,142,159)(3,158,143,18)(4,17,144,157)(5,156,145,16)(6,15,146,155)(7,154,147,14)(8,13,148,153)(9,152,149,12)(10,11,150,151)(21,90,64,54)(22,53,65,89)(23,88,66,52)(24,51,67,87)(25,86,68,50)(26,49,69,85)(27,84,70,48)(28,47,71,83)(29,82,72,46)(30,45,73,81)(31,100,74,44)(32,43,75,99)(33,98,76,42)(34,41,77,97)(35,96,78,60)(36,59,79,95)(37,94,80,58)(38,57,61,93)(39,92,62,56)(40,55,63,91)(101,121,136,106)(102,105,137,140)(103,139,138,104)(107,135,122,120)(108,119,123,134)(109,133,124,118)(110,117,125,132)(111,131,126,116)(112,115,127,130)(113,129,128,114) );

G=PermutationGroup([[(1,139,141,104),(2,140,142,105),(3,121,143,106),(4,122,144,107),(5,123,145,108),(6,124,146,109),(7,125,147,110),(8,126,148,111),(9,127,149,112),(10,128,150,113),(11,129,151,114),(12,130,152,115),(13,131,153,116),(14,132,154,117),(15,133,155,118),(16,134,156,119),(17,135,157,120),(18,136,158,101),(19,137,159,102),(20,138,160,103),(21,81,64,45),(22,82,65,46),(23,83,66,47),(24,84,67,48),(25,85,68,49),(26,86,69,50),(27,87,70,51),(28,88,71,52),(29,89,72,53),(30,90,73,54),(31,91,74,55),(32,92,75,56),(33,93,76,57),(34,94,77,58),(35,95,78,59),(36,96,79,60),(37,97,80,41),(38,98,61,42),(39,99,62,43),(40,100,63,44)], [(1,60),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,55),(17,56),(18,57),(19,58),(20,59),(21,109),(22,110),(23,111),(24,112),(25,113),(26,114),(27,115),(28,116),(29,117),(30,118),(31,119),(32,120),(33,101),(34,102),(35,103),(36,104),(37,105),(38,106),(39,107),(40,108),(61,121),(62,122),(63,123),(64,124),(65,125),(66,126),(67,127),(68,128),(69,129),(70,130),(71,131),(72,132),(73,133),(74,134),(75,135),(76,136),(77,137),(78,138),(79,139),(80,140),(81,146),(82,147),(83,148),(84,149),(85,150),(86,151),(87,152),(88,153),(89,154),(90,155),(91,156),(92,157),(93,158),(94,159),(95,160),(96,141),(97,142),(98,143),(99,144),(100,145)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,160,141,20),(2,19,142,159),(3,158,143,18),(4,17,144,157),(5,156,145,16),(6,15,146,155),(7,154,147,14),(8,13,148,153),(9,152,149,12),(10,11,150,151),(21,90,64,54),(22,53,65,89),(23,88,66,52),(24,51,67,87),(25,86,68,50),(26,49,69,85),(27,84,70,48),(28,47,71,83),(29,82,72,46),(30,45,73,81),(31,100,74,44),(32,43,75,99),(33,98,76,42),(34,41,77,97),(35,96,78,60),(36,59,79,95),(37,94,80,58),(38,57,61,93),(39,92,62,56),(40,55,63,91),(101,121,136,106),(102,105,137,140),(103,139,138,104),(107,135,122,120),(108,119,123,134),(109,133,124,118),(110,117,125,132),(111,131,126,116),(112,115,127,130),(113,129,128,114)]])

59 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H5A5B8A8B8C8D10A···10F10G···10N20A···20H20I···20X
order12222224444444455888810···1010···1020···2020···20
size1111444022224444022202020202···24···42···24···4

59 irreducible representations

dim1111111122222222222444
type++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D5C4○D4D10D10D10C4○D8C5⋊D4D20C4○D20C8⋊C22D4.D10D4.8D10
kernelD4.1D20C203C8D206C4C10.Q16C4.D20C2×D4⋊D5C2×D4.D5D4×C20C2×C20C5×D4C4×D4C20C42C4⋊C4C2×D4C10C2×C4D4C4C10C2C2
# reps1111111122222224888144

Matrix representation of D4.1D20 in GL4(𝔽41) generated by

1000
0100
00121
003740
,
40000
04000
00035
00340
,
163000
27200
00320
00032
,
393000
4200
00320
00369
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,1,37,0,0,21,40],[40,0,0,0,0,40,0,0,0,0,0,34,0,0,35,0],[16,27,0,0,30,2,0,0,0,0,32,0,0,0,0,32],[39,4,0,0,30,2,0,0,0,0,32,36,0,0,0,9] >;

D4.1D20 in GAP, Magma, Sage, TeX

D_4._1D_{20}
% in TeX

G:=Group("D4.1D20");
// GroupNames label

G:=SmallGroup(320,643);
// by ID

G=gap.SmallGroup(320,643);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,344,254,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽