Copied to
clipboard

G = C16.D10order 320 = 26·5

1st non-split extension by C16 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8.4D20, C40.3D4, C16.1D10, C4.15D40, C20.15D8, Dic402C2, M5(2)⋊2D5, C80.1C22, C22.6D40, C40.60C23, D40.8C22, Dic20.9C22, C16⋊D52C2, (C2×C10).7D8, (C2×C8).74D10, C2.16(C2×D40), C10.14(C2×D8), (C2×C4).42D20, C4.41(C2×D20), C51(Q32⋊C2), C20.284(C2×D4), (C2×C20).129D4, (C5×M5(2))⋊2C2, C8.50(C22×D5), (C2×Dic20)⋊11C2, D407C2.9C2, (C2×C40).60C22, SmallGroup(320,536)

Series: Derived Chief Lower central Upper central

C1C40 — C16.D10
C1C5C10C20C40D40D407C2 — C16.D10
C5C10C20C40 — C16.D10
C1C2C2×C4C2×C8M5(2)

Generators and relations for C16.D10
 G = < a,b,c | a16=1, b10=c2=a8, bab-1=a9, cac-1=a-1, cbc-1=b9 >

Subgroups: 430 in 82 conjugacy classes, 35 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, D5, C10, C10, C16, C2×C8, D8, SD16, Q16, C2×Q8, C4○D4, Dic5, C20, D10, C2×C10, M5(2), SD32, Q32, C2×Q16, C4○D8, C40, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, Q32⋊C2, C80, C40⋊C2, D40, Dic20, Dic20, Dic20, C2×C40, C2×Dic10, C4○D20, C16⋊D5, Dic40, C5×M5(2), D407C2, C2×Dic20, C16.D10
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, D20, C22×D5, Q32⋊C2, D40, C2×D20, C2×D40, C16.D10

Smallest permutation representation of C16.D10
On 160 points
Generators in S160
(1 126 104 31 41 63 99 142 11 136 114 21 51 73 89 152)(2 137 105 22 42 74 100 153 12 127 115 32 52 64 90 143)(3 128 106 33 43 65 81 144 13 138 116 23 53 75 91 154)(4 139 107 24 44 76 82 155 14 129 117 34 54 66 92 145)(5 130 108 35 45 67 83 146 15 140 118 25 55 77 93 156)(6 121 109 26 46 78 84 157 16 131 119 36 56 68 94 147)(7 132 110 37 47 69 85 148 17 122 120 27 57 79 95 158)(8 123 111 28 48 80 86 159 18 133 101 38 58 70 96 149)(9 134 112 39 49 71 87 150 19 124 102 29 59 61 97 160)(10 125 113 30 50 62 88 141 20 135 103 40 60 72 98 151)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 62 31 72)(22 71 32 61)(23 80 33 70)(24 69 34 79)(25 78 35 68)(26 67 36 77)(27 76 37 66)(28 65 38 75)(29 74 39 64)(30 63 40 73)(41 60 51 50)(42 49 52 59)(43 58 53 48)(44 47 54 57)(45 56 55 46)(81 101 91 111)(82 110 92 120)(83 119 93 109)(84 108 94 118)(85 117 95 107)(86 106 96 116)(87 115 97 105)(88 104 98 114)(89 113 99 103)(90 102 100 112)(121 146 131 156)(122 155 132 145)(123 144 133 154)(124 153 134 143)(125 142 135 152)(126 151 136 141)(127 160 137 150)(128 149 138 159)(129 158 139 148)(130 147 140 157)

G:=sub<Sym(160)| (1,126,104,31,41,63,99,142,11,136,114,21,51,73,89,152)(2,137,105,22,42,74,100,153,12,127,115,32,52,64,90,143)(3,128,106,33,43,65,81,144,13,138,116,23,53,75,91,154)(4,139,107,24,44,76,82,155,14,129,117,34,54,66,92,145)(5,130,108,35,45,67,83,146,15,140,118,25,55,77,93,156)(6,121,109,26,46,78,84,157,16,131,119,36,56,68,94,147)(7,132,110,37,47,69,85,148,17,122,120,27,57,79,95,158)(8,123,111,28,48,80,86,159,18,133,101,38,58,70,96,149)(9,134,112,39,49,71,87,150,19,124,102,29,59,61,97,160)(10,125,113,30,50,62,88,141,20,135,103,40,60,72,98,151), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,62,31,72)(22,71,32,61)(23,80,33,70)(24,69,34,79)(25,78,35,68)(26,67,36,77)(27,76,37,66)(28,65,38,75)(29,74,39,64)(30,63,40,73)(41,60,51,50)(42,49,52,59)(43,58,53,48)(44,47,54,57)(45,56,55,46)(81,101,91,111)(82,110,92,120)(83,119,93,109)(84,108,94,118)(85,117,95,107)(86,106,96,116)(87,115,97,105)(88,104,98,114)(89,113,99,103)(90,102,100,112)(121,146,131,156)(122,155,132,145)(123,144,133,154)(124,153,134,143)(125,142,135,152)(126,151,136,141)(127,160,137,150)(128,149,138,159)(129,158,139,148)(130,147,140,157)>;

G:=Group( (1,126,104,31,41,63,99,142,11,136,114,21,51,73,89,152)(2,137,105,22,42,74,100,153,12,127,115,32,52,64,90,143)(3,128,106,33,43,65,81,144,13,138,116,23,53,75,91,154)(4,139,107,24,44,76,82,155,14,129,117,34,54,66,92,145)(5,130,108,35,45,67,83,146,15,140,118,25,55,77,93,156)(6,121,109,26,46,78,84,157,16,131,119,36,56,68,94,147)(7,132,110,37,47,69,85,148,17,122,120,27,57,79,95,158)(8,123,111,28,48,80,86,159,18,133,101,38,58,70,96,149)(9,134,112,39,49,71,87,150,19,124,102,29,59,61,97,160)(10,125,113,30,50,62,88,141,20,135,103,40,60,72,98,151), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,62,31,72)(22,71,32,61)(23,80,33,70)(24,69,34,79)(25,78,35,68)(26,67,36,77)(27,76,37,66)(28,65,38,75)(29,74,39,64)(30,63,40,73)(41,60,51,50)(42,49,52,59)(43,58,53,48)(44,47,54,57)(45,56,55,46)(81,101,91,111)(82,110,92,120)(83,119,93,109)(84,108,94,118)(85,117,95,107)(86,106,96,116)(87,115,97,105)(88,104,98,114)(89,113,99,103)(90,102,100,112)(121,146,131,156)(122,155,132,145)(123,144,133,154)(124,153,134,143)(125,142,135,152)(126,151,136,141)(127,160,137,150)(128,149,138,159)(129,158,139,148)(130,147,140,157) );

G=PermutationGroup([[(1,126,104,31,41,63,99,142,11,136,114,21,51,73,89,152),(2,137,105,22,42,74,100,153,12,127,115,32,52,64,90,143),(3,128,106,33,43,65,81,144,13,138,116,23,53,75,91,154),(4,139,107,24,44,76,82,155,14,129,117,34,54,66,92,145),(5,130,108,35,45,67,83,146,15,140,118,25,55,77,93,156),(6,121,109,26,46,78,84,157,16,131,119,36,56,68,94,147),(7,132,110,37,47,69,85,148,17,122,120,27,57,79,95,158),(8,123,111,28,48,80,86,159,18,133,101,38,58,70,96,149),(9,134,112,39,49,71,87,150,19,124,102,29,59,61,97,160),(10,125,113,30,50,62,88,141,20,135,103,40,60,72,98,151)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,62,31,72),(22,71,32,61),(23,80,33,70),(24,69,34,79),(25,78,35,68),(26,67,36,77),(27,76,37,66),(28,65,38,75),(29,74,39,64),(30,63,40,73),(41,60,51,50),(42,49,52,59),(43,58,53,48),(44,47,54,57),(45,56,55,46),(81,101,91,111),(82,110,92,120),(83,119,93,109),(84,108,94,118),(85,117,95,107),(86,106,96,116),(87,115,97,105),(88,104,98,114),(89,113,99,103),(90,102,100,112),(121,146,131,156),(122,155,132,145),(123,144,133,154),(124,153,134,143),(125,142,135,152),(126,151,136,141),(127,160,137,150),(128,149,138,159),(129,158,139,148),(130,147,140,157)]])

56 conjugacy classes

class 1 2A2B2C4A4B4C4D4E5A5B8A8B8C10A10B10C10D16A16B16C16D20A20B20C20D20E20F40A···40H40I40J40K40L80A···80P
order12224444455888101010101616161620202020202040···404040404080···80
size112402240404022224224444442222442···244444···4

56 irreducible representations

dim1111112222222222244
type+++++++++++++++++--
imageC1C2C2C2C2C2D4D4D5D8D8D10D10D20D20D40D40Q32⋊C2C16.D10
kernelC16.D10C16⋊D5Dic40C5×M5(2)D407C2C2×Dic20C40C2×C20M5(2)C20C2×C10C16C2×C8C8C2×C4C4C22C5C1
# reps1221111122242448828

Matrix representation of C16.D10 in GL4(𝔽241) generated by

204962390
81080239
517137145
12181233133
,
2269117566
1296511751
112566517
7623953126
,
226147116233
1299176125
22815311129
1112043236
G:=sub<GL(4,GF(241))| [204,8,5,12,96,108,171,181,239,0,37,233,0,239,145,133],[226,129,112,76,91,65,56,239,175,117,65,53,66,51,17,126],[226,129,228,11,147,9,153,120,116,176,11,43,233,125,129,236] >;

C16.D10 in GAP, Magma, Sage, TeX

C_{16}.D_{10}
% in TeX

G:=Group("C16.D10");
// GroupNames label

G:=SmallGroup(320,536);
// by ID

G=gap.SmallGroup(320,536);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,387,142,1571,80,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^16=1,b^10=c^2=a^8,b*a*b^-1=a^9,c*a*c^-1=a^-1,c*b*c^-1=b^9>;
// generators/relations

׿
×
𝔽