Copied to
clipboard

G = D80⋊C2order 320 = 26·5

2nd semidirect product of D80 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D802C2, C161D10, C8.3D20, C40.2D4, C801C22, C20.14D8, C4.14D40, D408C22, M5(2)⋊1D5, C22.5D40, C40.59C23, Dic207C22, C16⋊D51C2, (C2×C10).6D8, (C2×D40)⋊11C2, C51(C16⋊C22), C10.13(C2×D8), (C2×C4).41D20, C4.40(C2×D20), (C2×C8).73D10, C2.15(C2×D40), D407C29C2, (C2×C20).128D4, C20.283(C2×D4), (C5×M5(2))⋊1C2, C8.49(C22×D5), (C2×C40).59C22, SmallGroup(320,535)

Series: Derived Chief Lower central Upper central

C1C40 — D80⋊C2
C1C5C10C20C40D40C2×D40 — D80⋊C2
C5C10C20C40 — D80⋊C2
C1C2C2×C4C2×C8M5(2)

Generators and relations for D80⋊C2
 G = < a,b,c | a80=b2=c2=1, bab=a-1, cac=a41, cbc=a40b >

Subgroups: 622 in 90 conjugacy classes, 35 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C16, C2×C8, D8, SD16, Q16, C2×D4, C4○D4, Dic5, C20, D10, C2×C10, M5(2), D16, SD32, C2×D8, C4○D8, C40, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C22×D5, C16⋊C22, C80, C40⋊C2, D40, D40, D40, Dic20, C2×C40, C2×D20, C4○D20, D80, C16⋊D5, C5×M5(2), C2×D40, D407C2, D80⋊C2
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, D20, C22×D5, C16⋊C22, D40, C2×D20, C2×D40, D80⋊C2

Smallest permutation representation of D80⋊C2
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 80)(2 79)(3 78)(4 77)(5 76)(6 75)(7 74)(8 73)(9 72)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 64)(18 63)(19 62)(20 61)(21 60)(22 59)(23 58)(24 57)(25 56)(26 55)(27 54)(28 53)(29 52)(30 51)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)
(2 42)(4 44)(6 46)(8 48)(10 50)(12 52)(14 54)(16 56)(18 58)(20 60)(22 62)(24 64)(26 66)(28 68)(30 70)(32 72)(34 74)(36 76)(38 78)(40 80)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,60)(22,59)(23,58)(24,57)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41), (2,42)(4,44)(6,46)(8,48)(10,50)(12,52)(14,54)(16,56)(18,58)(20,60)(22,62)(24,64)(26,66)(28,68)(30,70)(32,72)(34,74)(36,76)(38,78)(40,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,60)(22,59)(23,58)(24,57)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41), (2,42)(4,44)(6,46)(8,48)(10,50)(12,52)(14,54)(16,56)(18,58)(20,60)(22,62)(24,64)(26,66)(28,68)(30,70)(32,72)(34,74)(36,76)(38,78)(40,80) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,80),(2,79),(3,78),(4,77),(5,76),(6,75),(7,74),(8,73),(9,72),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,64),(18,63),(19,62),(20,61),(21,60),(22,59),(23,58),(24,57),(25,56),(26,55),(27,54),(28,53),(29,52),(30,51),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41)], [(2,42),(4,44),(6,46),(8,48),(10,50),(12,52),(14,54),(16,56),(18,58),(20,60),(22,62),(24,64),(26,66),(28,68),(30,70),(32,72),(34,74),(36,76),(38,78),(40,80)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C5A5B8A8B8C10A10B10C10D16A16B16C16D20A20B20C20D20E20F40A···40H40I40J40K40L80A···80P
order12222244455888101010101616161620202020202040···404040404080···80
size112404040224022224224444442222442···244444···4

56 irreducible representations

dim1111112222222222244
type+++++++++++++++++++
imageC1C2C2C2C2C2D4D4D5D8D8D10D10D20D20D40D40C16⋊C22D80⋊C2
kernelD80⋊C2D80C16⋊D5C5×M5(2)C2×D40D407C2C40C2×C20M5(2)C20C2×C10C16C2×C8C8C2×C4C4C22C5C1
# reps1221111122242448828

Matrix representation of D80⋊C2 in GL4(𝔽241) generated by

95102
17227239104
1474215215
1810451231
,
20265382
33142238238
17320469209
23726369
,
1000
0100
312262400
2321900240
G:=sub<GL(4,GF(241))| [9,17,147,18,51,227,42,104,0,239,15,51,2,104,215,231],[202,33,173,237,65,142,204,2,3,238,69,63,82,238,209,69],[1,0,31,232,0,1,226,190,0,0,240,0,0,0,0,240] >;

D80⋊C2 in GAP, Magma, Sage, TeX

D_{80}\rtimes C_2
% in TeX

G:=Group("D80:C2");
// GroupNames label

G:=SmallGroup(320,535);
// by ID

G=gap.SmallGroup(320,535);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,387,142,675,192,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^80=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^41,c*b*c=a^40*b>;
// generators/relations

׿
×
𝔽