Copied to
clipboard

G = C10.432+ 1+4order 320 = 26·5

43rd non-split extension by C10 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.432+ 1+4, C4⋊D417D5, C202D423C2, C4⋊C4.182D10, (D4×Dic5)⋊22C2, (C2×D4).156D10, C22⋊C4.49D10, C4.Dic1019C2, Dic54D411C2, D10.53(C4○D4), C20.203(C4○D4), C4.96(D42D5), (C2×C20).596C23, (C2×C10).158C24, (C22×C4).225D10, C2.45(D46D10), C23.18(C22×D5), (D4×C10).124C22, C23.D1019C2, C4⋊Dic5.372C22, (C22×C10).25C23, (C2×Dic5).77C23, C22.179(C23×D5), C23.D5.26C22, C23.18D1011C2, C23.21D1026C2, (C22×C20).243C22, C57(C22.47C24), (C4×Dic5).104C22, (C22×D5).201C23, D10⋊C4.127C22, C10.D4.139C22, (C22×Dic5).111C22, (D5×C4⋊C4)⋊23C2, (C4×C5⋊D4)⋊19C2, C2.42(D5×C4○D4), (C5×C4⋊D4)⋊20C2, (C2×C4×D5).95C22, C10.155(C2×C4○D4), C2.38(C2×D42D5), (C2×C4).40(C22×D5), (C5×C4⋊C4).146C22, (C2×C5⋊D4).31C22, (C5×C22⋊C4).15C22, SmallGroup(320,1286)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.432+ 1+4
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — C10.432+ 1+4
C5C2×C10 — C10.432+ 1+4
C1C22C4⋊D4

Generators and relations for C10.432+ 1+4
 G = < a,b,c,d,e | a10=b4=c2=1, d2=a5b2, e2=a5, bab-1=a-1, ac=ca, ad=da, ae=ea, cbc=a5b-1, bd=db, ebe-1=a5b, cd=dc, ece-1=a5c, ede-1=b2d >

Subgroups: 790 in 238 conjugacy classes, 97 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C4⋊C4, C42⋊C2, C4×D4, C4⋊D4, C4⋊D4, C22.D4, C42.C2, C422C2, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22×C10, C22.47C24, C4×Dic5, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C23.D5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×C4×D5, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C2×C5⋊D4, C22×C20, D4×C10, D4×C10, C23.D10, Dic54D4, C4.Dic10, D5×C4⋊C4, C23.21D10, C4×C5⋊D4, D4×Dic5, C23.18D10, C202D4, C202D4, C5×C4⋊D4, C10.432+ 1+4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.47C24, D42D5, C23×D5, C2×D42D5, D46D10, D5×C4○D4, C10.432+ 1+4

Smallest permutation representation of C10.432+ 1+4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 16 25 151)(2 15 26 160)(3 14 27 159)(4 13 28 158)(5 12 29 157)(6 11 30 156)(7 20 21 155)(8 19 22 154)(9 18 23 153)(10 17 24 152)(31 136 50 145)(32 135 41 144)(33 134 42 143)(34 133 43 142)(35 132 44 141)(36 131 45 150)(37 140 46 149)(38 139 47 148)(39 138 48 147)(40 137 49 146)(51 125 70 116)(52 124 61 115)(53 123 62 114)(54 122 63 113)(55 121 64 112)(56 130 65 111)(57 129 66 120)(58 128 67 119)(59 127 68 118)(60 126 69 117)(71 96 90 105)(72 95 81 104)(73 94 82 103)(74 93 83 102)(75 92 84 101)(76 91 85 110)(77 100 86 109)(78 99 87 108)(79 98 88 107)(80 97 89 106)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 31)(7 32)(8 33)(9 34)(10 35)(11 150)(12 141)(13 142)(14 143)(15 144)(16 145)(17 146)(18 147)(19 148)(20 149)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)(61 86)(62 87)(63 88)(64 89)(65 90)(66 81)(67 82)(68 83)(69 84)(70 85)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(131 156)(132 157)(133 158)(134 159)(135 160)(136 151)(137 152)(138 153)(139 154)(140 155)
(1 130 30 116)(2 121 21 117)(3 122 22 118)(4 123 23 119)(5 124 24 120)(6 125 25 111)(7 126 26 112)(8 127 27 113)(9 128 28 114)(10 129 29 115)(11 70 151 56)(12 61 152 57)(13 62 153 58)(14 63 154 59)(15 64 155 60)(16 65 156 51)(17 66 157 52)(18 67 158 53)(19 68 159 54)(20 69 160 55)(31 105 45 91)(32 106 46 92)(33 107 47 93)(34 108 48 94)(35 109 49 95)(36 110 50 96)(37 101 41 97)(38 102 42 98)(39 103 43 99)(40 104 44 100)(71 150 85 136)(72 141 86 137)(73 142 87 138)(74 143 88 139)(75 144 89 140)(76 145 90 131)(77 146 81 132)(78 147 82 133)(79 148 83 134)(80 149 84 135)
(1 145 6 150)(2 146 7 141)(3 147 8 142)(4 148 9 143)(5 149 10 144)(11 31 16 36)(12 32 17 37)(13 33 18 38)(14 34 19 39)(15 35 20 40)(21 132 26 137)(22 133 27 138)(23 134 28 139)(24 135 29 140)(25 136 30 131)(41 152 46 157)(42 153 47 158)(43 154 48 159)(44 155 49 160)(45 156 50 151)(51 105 56 110)(52 106 57 101)(53 107 58 102)(54 108 59 103)(55 109 60 104)(61 97 66 92)(62 98 67 93)(63 99 68 94)(64 100 69 95)(65 91 70 96)(71 125 76 130)(72 126 77 121)(73 127 78 122)(74 128 79 123)(75 129 80 124)(81 117 86 112)(82 118 87 113)(83 119 88 114)(84 120 89 115)(85 111 90 116)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,16,25,151)(2,15,26,160)(3,14,27,159)(4,13,28,158)(5,12,29,157)(6,11,30,156)(7,20,21,155)(8,19,22,154)(9,18,23,153)(10,17,24,152)(31,136,50,145)(32,135,41,144)(33,134,42,143)(34,133,43,142)(35,132,44,141)(36,131,45,150)(37,140,46,149)(38,139,47,148)(39,138,48,147)(40,137,49,146)(51,125,70,116)(52,124,61,115)(53,123,62,114)(54,122,63,113)(55,121,64,112)(56,130,65,111)(57,129,66,120)(58,128,67,119)(59,127,68,118)(60,126,69,117)(71,96,90,105)(72,95,81,104)(73,94,82,103)(74,93,83,102)(75,92,84,101)(76,91,85,110)(77,100,86,109)(78,99,87,108)(79,98,88,107)(80,97,89,106), (1,36)(2,37)(3,38)(4,39)(5,40)(6,31)(7,32)(8,33)(9,34)(10,35)(11,150)(12,141)(13,142)(14,143)(15,144)(16,145)(17,146)(18,147)(19,148)(20,149)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(61,86)(62,87)(63,88)(64,89)(65,90)(66,81)(67,82)(68,83)(69,84)(70,85)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,156)(132,157)(133,158)(134,159)(135,160)(136,151)(137,152)(138,153)(139,154)(140,155), (1,130,30,116)(2,121,21,117)(3,122,22,118)(4,123,23,119)(5,124,24,120)(6,125,25,111)(7,126,26,112)(8,127,27,113)(9,128,28,114)(10,129,29,115)(11,70,151,56)(12,61,152,57)(13,62,153,58)(14,63,154,59)(15,64,155,60)(16,65,156,51)(17,66,157,52)(18,67,158,53)(19,68,159,54)(20,69,160,55)(31,105,45,91)(32,106,46,92)(33,107,47,93)(34,108,48,94)(35,109,49,95)(36,110,50,96)(37,101,41,97)(38,102,42,98)(39,103,43,99)(40,104,44,100)(71,150,85,136)(72,141,86,137)(73,142,87,138)(74,143,88,139)(75,144,89,140)(76,145,90,131)(77,146,81,132)(78,147,82,133)(79,148,83,134)(80,149,84,135), (1,145,6,150)(2,146,7,141)(3,147,8,142)(4,148,9,143)(5,149,10,144)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40)(21,132,26,137)(22,133,27,138)(23,134,28,139)(24,135,29,140)(25,136,30,131)(41,152,46,157)(42,153,47,158)(43,154,48,159)(44,155,49,160)(45,156,50,151)(51,105,56,110)(52,106,57,101)(53,107,58,102)(54,108,59,103)(55,109,60,104)(61,97,66,92)(62,98,67,93)(63,99,68,94)(64,100,69,95)(65,91,70,96)(71,125,76,130)(72,126,77,121)(73,127,78,122)(74,128,79,123)(75,129,80,124)(81,117,86,112)(82,118,87,113)(83,119,88,114)(84,120,89,115)(85,111,90,116)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,16,25,151)(2,15,26,160)(3,14,27,159)(4,13,28,158)(5,12,29,157)(6,11,30,156)(7,20,21,155)(8,19,22,154)(9,18,23,153)(10,17,24,152)(31,136,50,145)(32,135,41,144)(33,134,42,143)(34,133,43,142)(35,132,44,141)(36,131,45,150)(37,140,46,149)(38,139,47,148)(39,138,48,147)(40,137,49,146)(51,125,70,116)(52,124,61,115)(53,123,62,114)(54,122,63,113)(55,121,64,112)(56,130,65,111)(57,129,66,120)(58,128,67,119)(59,127,68,118)(60,126,69,117)(71,96,90,105)(72,95,81,104)(73,94,82,103)(74,93,83,102)(75,92,84,101)(76,91,85,110)(77,100,86,109)(78,99,87,108)(79,98,88,107)(80,97,89,106), (1,36)(2,37)(3,38)(4,39)(5,40)(6,31)(7,32)(8,33)(9,34)(10,35)(11,150)(12,141)(13,142)(14,143)(15,144)(16,145)(17,146)(18,147)(19,148)(20,149)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(61,86)(62,87)(63,88)(64,89)(65,90)(66,81)(67,82)(68,83)(69,84)(70,85)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,156)(132,157)(133,158)(134,159)(135,160)(136,151)(137,152)(138,153)(139,154)(140,155), (1,130,30,116)(2,121,21,117)(3,122,22,118)(4,123,23,119)(5,124,24,120)(6,125,25,111)(7,126,26,112)(8,127,27,113)(9,128,28,114)(10,129,29,115)(11,70,151,56)(12,61,152,57)(13,62,153,58)(14,63,154,59)(15,64,155,60)(16,65,156,51)(17,66,157,52)(18,67,158,53)(19,68,159,54)(20,69,160,55)(31,105,45,91)(32,106,46,92)(33,107,47,93)(34,108,48,94)(35,109,49,95)(36,110,50,96)(37,101,41,97)(38,102,42,98)(39,103,43,99)(40,104,44,100)(71,150,85,136)(72,141,86,137)(73,142,87,138)(74,143,88,139)(75,144,89,140)(76,145,90,131)(77,146,81,132)(78,147,82,133)(79,148,83,134)(80,149,84,135), (1,145,6,150)(2,146,7,141)(3,147,8,142)(4,148,9,143)(5,149,10,144)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40)(21,132,26,137)(22,133,27,138)(23,134,28,139)(24,135,29,140)(25,136,30,131)(41,152,46,157)(42,153,47,158)(43,154,48,159)(44,155,49,160)(45,156,50,151)(51,105,56,110)(52,106,57,101)(53,107,58,102)(54,108,59,103)(55,109,60,104)(61,97,66,92)(62,98,67,93)(63,99,68,94)(64,100,69,95)(65,91,70,96)(71,125,76,130)(72,126,77,121)(73,127,78,122)(74,128,79,123)(75,129,80,124)(81,117,86,112)(82,118,87,113)(83,119,88,114)(84,120,89,115)(85,111,90,116) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,16,25,151),(2,15,26,160),(3,14,27,159),(4,13,28,158),(5,12,29,157),(6,11,30,156),(7,20,21,155),(8,19,22,154),(9,18,23,153),(10,17,24,152),(31,136,50,145),(32,135,41,144),(33,134,42,143),(34,133,43,142),(35,132,44,141),(36,131,45,150),(37,140,46,149),(38,139,47,148),(39,138,48,147),(40,137,49,146),(51,125,70,116),(52,124,61,115),(53,123,62,114),(54,122,63,113),(55,121,64,112),(56,130,65,111),(57,129,66,120),(58,128,67,119),(59,127,68,118),(60,126,69,117),(71,96,90,105),(72,95,81,104),(73,94,82,103),(74,93,83,102),(75,92,84,101),(76,91,85,110),(77,100,86,109),(78,99,87,108),(79,98,88,107),(80,97,89,106)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,31),(7,32),(8,33),(9,34),(10,35),(11,150),(12,141),(13,142),(14,143),(15,144),(16,145),(17,146),(18,147),(19,148),(20,149),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75),(61,86),(62,87),(63,88),(64,89),(65,90),(66,81),(67,82),(68,83),(69,84),(70,85),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(131,156),(132,157),(133,158),(134,159),(135,160),(136,151),(137,152),(138,153),(139,154),(140,155)], [(1,130,30,116),(2,121,21,117),(3,122,22,118),(4,123,23,119),(5,124,24,120),(6,125,25,111),(7,126,26,112),(8,127,27,113),(9,128,28,114),(10,129,29,115),(11,70,151,56),(12,61,152,57),(13,62,153,58),(14,63,154,59),(15,64,155,60),(16,65,156,51),(17,66,157,52),(18,67,158,53),(19,68,159,54),(20,69,160,55),(31,105,45,91),(32,106,46,92),(33,107,47,93),(34,108,48,94),(35,109,49,95),(36,110,50,96),(37,101,41,97),(38,102,42,98),(39,103,43,99),(40,104,44,100),(71,150,85,136),(72,141,86,137),(73,142,87,138),(74,143,88,139),(75,144,89,140),(76,145,90,131),(77,146,81,132),(78,147,82,133),(79,148,83,134),(80,149,84,135)], [(1,145,6,150),(2,146,7,141),(3,147,8,142),(4,148,9,143),(5,149,10,144),(11,31,16,36),(12,32,17,37),(13,33,18,38),(14,34,19,39),(15,35,20,40),(21,132,26,137),(22,133,27,138),(23,134,28,139),(24,135,29,140),(25,136,30,131),(41,152,46,157),(42,153,47,158),(43,154,48,159),(44,155,49,160),(45,156,50,151),(51,105,56,110),(52,106,57,101),(53,107,58,102),(54,108,59,103),(55,109,60,104),(61,97,66,92),(62,98,67,93),(63,99,68,94),(64,100,69,95),(65,91,70,96),(71,125,76,130),(72,126,77,121),(73,127,78,122),(74,128,79,123),(75,129,80,124),(81,117,86,112),(82,118,87,113),(83,119,88,114),(84,120,89,115),(85,111,90,116)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G···4L4M4N4O4P5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order1222222224444444···444445510···10101010101010101020···2020202020
size1111444101022224410···1020202020222···2444488884···48888

53 irreducible representations

dim1111111111122222224444
type+++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D102+ 1+4D42D5D46D10D5×C4○D4
kernelC10.432+ 1+4C23.D10Dic54D4C4.Dic10D5×C4⋊C4C23.21D10C4×C5⋊D4D4×Dic5C23.18D10C202D4C5×C4⋊D4C4⋊D4C20D10C22⋊C4C4⋊C4C22×C4C2×D4C10C4C2C2
# reps1221111123124442261444

Matrix representation of C10.432+ 1+4 in GL6(𝔽41)

4000000
0400000
0003500
0073400
0000400
0000040
,
0320000
3200000
0074000
0073400
0000400
0000401
,
010000
100000
001000
000100
0000139
0000040
,
0400000
4000000
0040000
0004000
000090
000009
,
3200000
090000
0040000
0004000
0000139
0000140

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,7,0,0,0,0,35,34,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,32,0,0,0,0,32,0,0,0,0,0,0,0,7,7,0,0,0,0,40,34,0,0,0,0,0,0,40,40,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,39,40],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,1,0,0,0,0,39,40] >;

C10.432+ 1+4 in GAP, Magma, Sage, TeX

C_{10}._{43}2_+^{1+4}
% in TeX

G:=Group("C10.43ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1286);
// by ID

G=gap.SmallGroup(320,1286);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,100,1571,185,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=a^5*b^2,e^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=a^5*b^-1,b*d=d*b,e*b*e^-1=a^5*b,c*d=d*c,e*c*e^-1=a^5*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽