metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.472+ 1+4, C4⋊D4⋊22D5, C20⋊7D4⋊34C2, C20⋊2D4⋊27C2, C20⋊D4⋊19C2, C4⋊C4.185D10, (D4×Dic5)⋊26C2, (C2×D4).95D10, D20⋊8C4⋊22C2, (C2×C20).45C23, C22⋊C4.11D10, C4.Dic10⋊21C2, Dic5⋊D4⋊17C2, C20.206(C4○D4), C4.69(D4⋊2D5), (C2×C10).163C24, (C22×C4).230D10, D10.12D4⋊22C2, C2.49(D4⋊6D10), C2.31(D4⋊8D10), C23.23(C22×D5), (D4×C10).128C22, (C2×D20).151C22, C22.D20⋊13C2, C4⋊Dic5.210C22, (C2×Dic5).80C23, (C22×D5).70C23, C22.184(C23×D5), D10⋊C4.17C22, C23.21D10⋊28C2, (C22×C20).246C22, (C22×C10).191C23, C5⋊4(C22.34C24), (C4×Dic5).107C22, C10.D4.21C22, C23.D5.113C22, (C22×Dic5).115C22, (C5×C4⋊D4)⋊25C2, C10.87(C2×C4○D4), (C2×C4×D5).98C22, C2.42(C2×D4⋊2D5), (C2×C4).41(C22×D5), (C5×C4⋊C4).150C22, (C2×C5⋊D4).35C22, (C5×C22⋊C4).19C22, SmallGroup(320,1291)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10.472+ 1+4
G = < a,b,c,d,e | a10=b4=e2=1, c2=a5, d2=a5b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=a5b-1, dbd-1=a5b, be=eb, dcd-1=ece=a5c, ede=a5b2d >
Subgroups: 910 in 240 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C42⋊C2, C4×D4, C4⋊D4, C4⋊D4, C22.D4, C42.C2, C4⋊1D4, C4×D5, D20, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22×C10, C22.34C24, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C23.D5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×C4×D5, C2×D20, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, D4×C10, D10.12D4, C22.D20, C4.Dic10, D20⋊8C4, C23.21D10, C20⋊7D4, D4×Dic5, C20⋊2D4, Dic5⋊D4, C20⋊D4, C5×C4⋊D4, C10.472+ 1+4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.34C24, D4⋊2D5, C23×D5, C2×D4⋊2D5, D4⋊6D10, D4⋊8D10, C10.472+ 1+4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 138 18 123)(2 139 19 124)(3 140 20 125)(4 131 11 126)(5 132 12 127)(6 133 13 128)(7 134 14 129)(8 135 15 130)(9 136 16 121)(10 137 17 122)(21 156 36 141)(22 157 37 142)(23 158 38 143)(24 159 39 144)(25 160 40 145)(26 151 31 146)(27 152 32 147)(28 153 33 148)(29 154 34 149)(30 155 35 150)(41 96 56 81)(42 97 57 82)(43 98 58 83)(44 99 59 84)(45 100 60 85)(46 91 51 86)(47 92 52 87)(48 93 53 88)(49 94 54 89)(50 95 55 90)(61 116 76 101)(62 117 77 102)(63 118 78 103)(64 119 79 104)(65 120 80 105)(66 111 71 106)(67 112 72 107)(68 113 73 108)(69 114 74 109)(70 115 75 110)
(1 88 6 83)(2 89 7 84)(3 90 8 85)(4 81 9 86)(5 82 10 87)(11 96 16 91)(12 97 17 92)(13 98 18 93)(14 99 19 94)(15 100 20 95)(21 106 26 101)(22 107 27 102)(23 108 28 103)(24 109 29 104)(25 110 30 105)(31 116 36 111)(32 117 37 112)(33 118 38 113)(34 119 39 114)(35 120 40 115)(41 126 46 121)(42 127 47 122)(43 128 48 123)(44 129 49 124)(45 130 50 125)(51 136 56 131)(52 137 57 132)(53 138 58 133)(54 139 59 134)(55 140 60 135)(61 146 66 141)(62 147 67 142)(63 148 68 143)(64 149 69 144)(65 150 70 145)(71 156 76 151)(72 157 77 152)(73 158 78 153)(74 159 79 154)(75 160 80 155)
(1 33 13 23)(2 32 14 22)(3 31 15 21)(4 40 16 30)(5 39 17 29)(6 38 18 28)(7 37 19 27)(8 36 20 26)(9 35 11 25)(10 34 12 24)(41 75 51 65)(42 74 52 64)(43 73 53 63)(44 72 54 62)(45 71 55 61)(46 80 56 70)(47 79 57 69)(48 78 58 68)(49 77 59 67)(50 76 60 66)(81 120 91 110)(82 119 92 109)(83 118 93 108)(84 117 94 107)(85 116 95 106)(86 115 96 105)(87 114 97 104)(88 113 98 103)(89 112 99 102)(90 111 100 101)(121 160 131 150)(122 159 132 149)(123 158 133 148)(124 157 134 147)(125 156 135 146)(126 155 136 145)(127 154 137 144)(128 153 138 143)(129 152 139 142)(130 151 140 141)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)(81 106)(82 107)(83 108)(84 109)(85 110)(86 101)(87 102)(88 103)(89 104)(90 105)(91 116)(92 117)(93 118)(94 119)(95 120)(96 111)(97 112)(98 113)(99 114)(100 115)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,138,18,123)(2,139,19,124)(3,140,20,125)(4,131,11,126)(5,132,12,127)(6,133,13,128)(7,134,14,129)(8,135,15,130)(9,136,16,121)(10,137,17,122)(21,156,36,141)(22,157,37,142)(23,158,38,143)(24,159,39,144)(25,160,40,145)(26,151,31,146)(27,152,32,147)(28,153,33,148)(29,154,34,149)(30,155,35,150)(41,96,56,81)(42,97,57,82)(43,98,58,83)(44,99,59,84)(45,100,60,85)(46,91,51,86)(47,92,52,87)(48,93,53,88)(49,94,54,89)(50,95,55,90)(61,116,76,101)(62,117,77,102)(63,118,78,103)(64,119,79,104)(65,120,80,105)(66,111,71,106)(67,112,72,107)(68,113,73,108)(69,114,74,109)(70,115,75,110), (1,88,6,83)(2,89,7,84)(3,90,8,85)(4,81,9,86)(5,82,10,87)(11,96,16,91)(12,97,17,92)(13,98,18,93)(14,99,19,94)(15,100,20,95)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155), (1,33,13,23)(2,32,14,22)(3,31,15,21)(4,40,16,30)(5,39,17,29)(6,38,18,28)(7,37,19,27)(8,36,20,26)(9,35,11,25)(10,34,12,24)(41,75,51,65)(42,74,52,64)(43,73,53,63)(44,72,54,62)(45,71,55,61)(46,80,56,70)(47,79,57,69)(48,78,58,68)(49,77,59,67)(50,76,60,66)(81,120,91,110)(82,119,92,109)(83,118,93,108)(84,117,94,107)(85,116,95,106)(86,115,96,105)(87,114,97,104)(88,113,98,103)(89,112,99,102)(90,111,100,101)(121,160,131,150)(122,159,132,149)(123,158,133,148)(124,157,134,147)(125,156,135,146)(126,155,136,145)(127,154,137,144)(128,153,138,143)(129,152,139,142)(130,151,140,141), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,106)(82,107)(83,108)(84,109)(85,110)(86,101)(87,102)(88,103)(89,104)(90,105)(91,116)(92,117)(93,118)(94,119)(95,120)(96,111)(97,112)(98,113)(99,114)(100,115)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,138,18,123)(2,139,19,124)(3,140,20,125)(4,131,11,126)(5,132,12,127)(6,133,13,128)(7,134,14,129)(8,135,15,130)(9,136,16,121)(10,137,17,122)(21,156,36,141)(22,157,37,142)(23,158,38,143)(24,159,39,144)(25,160,40,145)(26,151,31,146)(27,152,32,147)(28,153,33,148)(29,154,34,149)(30,155,35,150)(41,96,56,81)(42,97,57,82)(43,98,58,83)(44,99,59,84)(45,100,60,85)(46,91,51,86)(47,92,52,87)(48,93,53,88)(49,94,54,89)(50,95,55,90)(61,116,76,101)(62,117,77,102)(63,118,78,103)(64,119,79,104)(65,120,80,105)(66,111,71,106)(67,112,72,107)(68,113,73,108)(69,114,74,109)(70,115,75,110), (1,88,6,83)(2,89,7,84)(3,90,8,85)(4,81,9,86)(5,82,10,87)(11,96,16,91)(12,97,17,92)(13,98,18,93)(14,99,19,94)(15,100,20,95)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155), (1,33,13,23)(2,32,14,22)(3,31,15,21)(4,40,16,30)(5,39,17,29)(6,38,18,28)(7,37,19,27)(8,36,20,26)(9,35,11,25)(10,34,12,24)(41,75,51,65)(42,74,52,64)(43,73,53,63)(44,72,54,62)(45,71,55,61)(46,80,56,70)(47,79,57,69)(48,78,58,68)(49,77,59,67)(50,76,60,66)(81,120,91,110)(82,119,92,109)(83,118,93,108)(84,117,94,107)(85,116,95,106)(86,115,96,105)(87,114,97,104)(88,113,98,103)(89,112,99,102)(90,111,100,101)(121,160,131,150)(122,159,132,149)(123,158,133,148)(124,157,134,147)(125,156,135,146)(126,155,136,145)(127,154,137,144)(128,153,138,143)(129,152,139,142)(130,151,140,141), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,106)(82,107)(83,108)(84,109)(85,110)(86,101)(87,102)(88,103)(89,104)(90,105)(91,116)(92,117)(93,118)(94,119)(95,120)(96,111)(97,112)(98,113)(99,114)(100,115)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,138,18,123),(2,139,19,124),(3,140,20,125),(4,131,11,126),(5,132,12,127),(6,133,13,128),(7,134,14,129),(8,135,15,130),(9,136,16,121),(10,137,17,122),(21,156,36,141),(22,157,37,142),(23,158,38,143),(24,159,39,144),(25,160,40,145),(26,151,31,146),(27,152,32,147),(28,153,33,148),(29,154,34,149),(30,155,35,150),(41,96,56,81),(42,97,57,82),(43,98,58,83),(44,99,59,84),(45,100,60,85),(46,91,51,86),(47,92,52,87),(48,93,53,88),(49,94,54,89),(50,95,55,90),(61,116,76,101),(62,117,77,102),(63,118,78,103),(64,119,79,104),(65,120,80,105),(66,111,71,106),(67,112,72,107),(68,113,73,108),(69,114,74,109),(70,115,75,110)], [(1,88,6,83),(2,89,7,84),(3,90,8,85),(4,81,9,86),(5,82,10,87),(11,96,16,91),(12,97,17,92),(13,98,18,93),(14,99,19,94),(15,100,20,95),(21,106,26,101),(22,107,27,102),(23,108,28,103),(24,109,29,104),(25,110,30,105),(31,116,36,111),(32,117,37,112),(33,118,38,113),(34,119,39,114),(35,120,40,115),(41,126,46,121),(42,127,47,122),(43,128,48,123),(44,129,49,124),(45,130,50,125),(51,136,56,131),(52,137,57,132),(53,138,58,133),(54,139,59,134),(55,140,60,135),(61,146,66,141),(62,147,67,142),(63,148,68,143),(64,149,69,144),(65,150,70,145),(71,156,76,151),(72,157,77,152),(73,158,78,153),(74,159,79,154),(75,160,80,155)], [(1,33,13,23),(2,32,14,22),(3,31,15,21),(4,40,16,30),(5,39,17,29),(6,38,18,28),(7,37,19,27),(8,36,20,26),(9,35,11,25),(10,34,12,24),(41,75,51,65),(42,74,52,64),(43,73,53,63),(44,72,54,62),(45,71,55,61),(46,80,56,70),(47,79,57,69),(48,78,58,68),(49,77,59,67),(50,76,60,66),(81,120,91,110),(82,119,92,109),(83,118,93,108),(84,117,94,107),(85,116,95,106),(86,115,96,105),(87,114,97,104),(88,113,98,103),(89,112,99,102),(90,111,100,101),(121,160,131,150),(122,159,132,149),(123,158,133,148),(124,157,134,147),(125,156,135,146),(126,155,136,145),(127,154,137,144),(128,153,138,143),(129,152,139,142),(130,151,140,141)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75),(81,106),(82,107),(83,108),(84,109),(85,110),(86,101),(87,102),(88,103),(89,104),(90,105),(91,116),(92,117),(93,118),(94,119),(95,120),(96,111),(97,112),(98,113),(99,114),(100,115),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | 20A | ··· | 20H | 20I | 20J | 20K | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 20 | 20 | 2 | 2 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | D10 | 2+ 1+4 | D4⋊2D5 | D4⋊6D10 | D4⋊8D10 |
kernel | C10.472+ 1+4 | D10.12D4 | C22.D20 | C4.Dic10 | D20⋊8C4 | C23.21D10 | C20⋊7D4 | D4×Dic5 | C20⋊2D4 | Dic5⋊D4 | C20⋊D4 | C5×C4⋊D4 | C4⋊D4 | C20 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C10 | C4 | C2 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 6 | 2 | 4 | 4 | 4 |
Matrix representation of C10.472+ 1+4 ►in GL8(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 34 | 0 | 38 | 0 |
0 | 0 | 0 | 0 | 0 | 34 | 0 | 38 |
0 | 0 | 0 | 0 | 3 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 7 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
39 | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 7 |
0 | 0 | 0 | 0 | 34 | 0 | 38 | 0 |
0 | 0 | 0 | 0 | 0 | 34 | 0 | 38 |
1 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
1 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,7,34,0,0,0,0,0,0,7,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,9,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,34,0,3,0,0,0,0,0,0,34,0,3,0,0,0,0,38,0,7,0,0,0,0,0,0,38,0,7],[9,39,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,34,0,0,0,0,0,0,3,0,34,0,0,0,0,7,0,38,0,0,0,0,0,0,7,0,38],[1,18,0,0,0,0,0,0,9,40,0,0,0,0,0,0,0,0,40,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,9,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C10.472+ 1+4 in GAP, Magma, Sage, TeX
C_{10}._{47}2_+^{1+4}
% in TeX
G:=Group("C10.47ES+(2,2)");
// GroupNames label
G:=SmallGroup(320,1291);
// by ID
G=gap.SmallGroup(320,1291);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,675,570,297,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=e^2=1,c^2=a^5,d^2=a^5*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=a^5*b^-1,d*b*d^-1=a^5*b,b*e=e*b,d*c*d^-1=e*c*e=a^5*c,e*d*e=a^5*b^2*d>;
// generators/relations